
Chromia Token Bridge

Executive Summary
This audit report was prepared by Quantstamp, the leader in blockchain security.

Type Bridge

Timeline 2024�01�15 through 2024�01�23

Language Solidity

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification Chromia Docs

Source Code

https://gitlab.com/chromaway/postchain-eif

#f73af2f

Auditors
Ibrahim Abouzied Auditing Engineer

Hytham Farah Auditing Engineer

Andy Lin Senior Auditing Engineer

Documentation quality Medium

Test quality Medium

Total Findings
24

Fixed: 17 Acknowledged: 6
Mitigated: 1

High severity findings 2 Fixed: 2

Medium severity findings 5 Fixed: 3 Acknowledged: 2

Low severity findings
10

Fixed: 8 Acknowledged: 1
Mitigated: 1

Undetermined severity
findings

1 Acknowledged: 1

Informational findings 6 Fixed: 4 Acknowledged: 2

Summary of Findings
The Chromia Token Bridge allows users to bridge tokens back and forth between EVM-compatible chains and Chromia. The bridge follows the
Lock & Mint model for L1 to L2 transfers, and the Burn & Release model for L2 to L1 transfers. L1 to L2 transfers are handled by Chromia listening to
token deposit events, and L2 to L1 transfers are performed by submitting a Merkle Proof to L1 verifying that the tokens have been burned on L2.

Among other features, token withdrawal requests undergo a holding period, allowing the contract owner to flag and deny any suspicious
transactions before withdrawal execution. The contract also has a separate withdrawal mechanism in the event of a mass exit: a scenario in which
all normal bridging activity is halted, and users are only permitted to withdraw their token balances per a specified Chromia node snapshot.

Among the notable issues discovered in the audit, some token withdrawals will not be possible for transferable tokens (CHRM�1). The current
implementation for mass exits allows for duplicate withdrawals (CHRM�3). Validator management faces issues as well. Former validators can forge
transactions for old block heights (CHRM�2), anyone can forge a transaction if all validators are removed for a given block height (CHRM�4), and a
new validator can forge blocks by front-running updates to the list of validators (CHRM�5).

The Chromia team was in communication and helped answer all of our questions throughout the audit. The documentation was helpful, though the
codebase could benefit from more in-line comments and NatSpec. Regarding the test suite, we were unable to find tests for withdrawals during
mass exits. It is important that all core features are tested before deployment. Additionally, we would like to emphasize that this audit only covers
the Ethereum/EVM�Compatible chain side of the Token Bridge. The Chromia side of the bridge is outside the scope of the audit.

Update: The Chromia team has fixed, acknowledged, or mitigated all findings.

ID DESCRIPTION SEVERITY STATUS

CHRM�1 Token Owner Unable to Withdraw From the Postchain • High Fixed

CHRM�2 Invalid Withdrawal by Former Validators • High Fixed

CHRM�3 Potential Double Spend upon Mass Exit • Medium Acknowledged

https://quantstamp.com/
https://docs.chromia.com/
https://gitlab.com/chromaway/postchain-eif
https://gitlab.com/chromaway/postchain-eif/commit/f73af2f71ba23319acae6d3896017d9ef5baf197


ID DESCRIPTION SEVERITY STATUS

CHRM�4 Contract Can Be Drained if There Are No Validators • Medium Fixed

CHRM�5 Validator Addition & Removal Is Vulnerable to Front-Running • Medium Fixed

CHRM�6 Risk of Running Out of Gas on Old Withdrawals • Medium Fixed

CHRM�7 Privileged Roles and Ownership • Medium Acknowledged

CHRM�8
Risk of Updating Balance with Failed Transfer in
TokenBridge.fund() • Low Fixed

CHRM�9 Signature Malleability • Low Acknowledged

CHRM�10 _balances  Inconsistency • Low Fixed

CHRM�11 Merkle Proof Library Implementation Weaknesses • Low Fixed

CHRM�12
Risk of Gas Insufficiency for Users with Excessive Tokens
During Mass Exit • Low Mitigated

CHRM�13 User Can Create Misleading Event • Low Fixed

CHRM�14 Missing Input Validation • Low Fixed

CHRM�15 Ownership Can Be Renounced • Low Fixed

CHRM�16 Critical Role Transfer Not Following Two-Step Pattern • Low Fixed

CHRM�17 Missing Initializers • Low Fixed

CHRM�18 Tokens May Return Empty Metadata • Informational Acknowledged

CHRM�19 Short Dispute Period • Informational Fixed

CHRM�20 Expensive Gas Usage with Nested Loop • Informational Fixed

CHRM�21
Application Monitoring Can Be Improved by Emitting More
Events • Informational Fixed

CHRM�22 Unlocked Pragma • Informational Fixed

CHRM�23 Upgradability • Informational Acknowledged

CHRM�24 Re-Orgs May Lead to Double Spend • Undetermined Acknowledged

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence



Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

 Code review that includes the following
 Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
 Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
 Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
 Testing and automated analysis that includes the following:

 Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

 Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
 Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and control

based on the established industry and academic practices, recommendations, and research.
 Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
The scope of the audit only covers the EVM�Compatible chain side of the Token Bridge. The Chromia side of the bridge is out of scope.

Files Included

contracts/utils/cryptography/*
contracts/Data.sol
contracts/Postchain.sol
contracts/TokenBridge.sol
contracts/Validator.sol

Files Excluded

contracts/token/*
contracts/utils/test/*
contracts/NFTBridge.sol

Findings
CHRM�1  Token Owner Unable to Withdraw From the Postchain • High Fixed

Update
Marked as "Fixed" by the client. Addressed in: d85d98c4bfa9faa464d3c6ef2f824457008027a2 . The client provided the following
explanation:

We removed the specific _ALICElimits out of the smart contract

File(s) affected: TokenBridge.sol

Description: The TokenBridge.withdraw()  function verifies the _ALICElimits  before allowing a withdrawal. The _ALICElimits  tracks a
user's deposited amount on the bridge. However, if a user bridges tokens to the Postchain and subsequently transfers those tokens, the token
recipient on the Postchain will be unable to withdraw because their _ALICElimits  might be zero if they have never deposited tokens. In other
words, the owners of the bridged token are at risk of being unable to redeem their token back in the original chain.

Exploit Scenario: Alice deposits 100 ERC�20 tokens into the Postchain and then transfers these bridged tokens to Bob. Bob's attempt to withdraw
fails since his _ALICElimits  is zero.



Recommendation: In discussions with the team during the audit, they indicated plans to remove this feature. If it is indeed removed as
unnecessary, this issue will be considered resolved.

CHRM�2  Invalid Withdrawal by Former Validators • High Fixed

Update
Marked as "Fixed" by the client. Addressed in: 18934185980ccd30e418f3c8a3daab25364566f1 . The client provided the following
explanation:

"Agree, this is know issue and we're developing a new version of token bridge that will using chromia achoring on evm chain
they we can validate chromia block header like your suggestion in next version. It will take time then we will not fix this in this
version. For the time being, we will only allow the latest validator list and do migration for old withdrawal on chromia side as
below steps (like Migration.sol):

 transfer the ownership of the validator contract to the smart contract
 write a method to migration all the pending withdrawal on Chromia side: update validator list to old one, call

withdrawrequest for each pending withdrawal, update the validator list to current one.
 transfer the ownership of the validator contract back to admin/owner (the smart contract should have a method to

transfer the ownership of the validator contract) Notes: We aim to get rid of the manual process described in the future.
Instead we will solve it by letting the client ask the new validators for a signature of the old block. Client can then use this
to construct a new witness to pass to the contract.

File(s) affected: TokenBridge.sol

Description: The TokenBridge  bridge contract depends on the validation of signatures from validators of a certain height to confirm that a
blockRid  is legitimate, ensuring the withdrawal event is part of the Postchain. However, there is a concern that former validators from previous

heights could collaborate to withdraw all funds by endorsing an invalid blockRid . Although the detailed implementation is beyond the scope of
this audit, as per the whitepaper, providers are required to stake Chromia tokens as collateral, which is forfeited if nodes under a provider's control
exhibit misconduct. This implies a risk that former validators, who no longer have stakes in the Chromia collateral, might extract all the funds from
the bridge without facing penalties.

Exploit Scenario: Consider the following example:
 At height h1 , Alice and Bob are the only validators.
 At height h2 , the validators change to Carol and David, with Alice and Bob withdrawing their stakes.
 Alice and Bob collude to sign a malicious blockRid  and generate an invalid withdrawal request.
 Following the WITHDRAW_OFFSET  period, Alice and Bob can extract all the funds from the bridge.

Recommendation: A potential solution involves re-designing the contract and its off-chain components to anchor the Postchain's block IDs to the
contract. Consequently, the bridge would be able to verify the legitimacy of block IDs based on their anchoring, rather than relying on on-demand
signatures.

CHRM�3  Potential Double Spend upon Mass Exit • Medium Acknowledged

Update
Marked as "Acknowledged" by the client.

The team added block.number  instead of height  to the WithdrawRequest  event in the commit 6761d52 . It might be hard to
filter out all pending withdrawals if only based on block.number  as there could be withdraw request before triggering the mass exit.
Addressed in: e1c352cee28c5d3ecd9c9bad8f528cff21c54ea4 .

We also not that the validation in withdraw()  is still missing. If a user submits a withdrawal request and then a mass exit triggers, the
user will still be able to call withdraw() .

The client provided the following explanation:

When setting mass-exit the admin operator need to preparing carefully and gain agreement with all the current chormia
validators. After that, the chromia blockchain will be halt and be maintained as read-only data. Basically, the mass-exit will be
only triggered only and only one time, the update function is just for update the mass-exit if admin operator set the wrong
mass-exit information. And because the acount snapshot merkle tree will be updated whenever there's change on the
account balance then the old withdraw before mass exit block is still valid.

 We already checked on the withdrawRequest().
 massExitBlock is the chromia block height and WITHDRAW_OFFSET period is on ethereum block so it's not approriate to

do that validation.
 As I mentioned in the note, the update mass-exit block is just for admin to update if wrong setting only. Still not find a

difference way to handle the wrong setting mass-exit block (some user might already withdraw before updating).
 I added more block height into the event."

File(s) affected: TokenBridge.sol

https://chromia.com/documents/Chromia-_-Platform-white-paper2019.pdf


Description: A mass exit can be triggered when there is suspicious activity on the Chromia chain. All further withdrawal requests will have to be
done on a snapshot block assembled periodically by Chromia nodes. Users will no longer be able to submit withdrawal requests for blocks after the
snapshot block.

However, the current implementation is at risk of enabling double withdrawals. This could happen if a mass exit is assigned a height that precedes
some already processed withdrawal requests. In such cases, a user might be able to withdraw funds twice: once through the standard withdrawal
process and again using the withdrawBySnapshot()  function to withdraw from the snapshot. This can also happen by calling
withdrawBySnapshot()  twice if updateMassExitBlock()  is called, as the new _snapshots[stateProof.leaf]  will be false .

The TokenBridge.pendingWithdraw()  function could potentially mitigate this risk. However, it would require the WITHDRAW_OFFSET  to be
lengthy enough for the admin to intervene. Based on discussions with the team, they appear to be planning to update the WITHDRAW_OFFSET  to
delay withdrawals by approximately one week on Ethereum, which should give the admin ample time to halt withdrawals at higher heights.

Recommendation: We believe there is no direct way to prevent this scenario; therefore, we would like the team to clearly outline their strategy for
managing such situations. We also recommend the following mitigations:

 In withdraw() , validate that the withdrawal did not occur past the mass exit, e.g. require(!isMassExit || wd.height < 
massExitBlock.height) .

 Do not allow triggerMassExit()  to assign a massExitBlock  to a block further in the past than the WITHDRAW_OFFSET  period.
WITHDRAW_OFFSET  should always allow time to mark all withdrawals that occurred after the mass exit to be parked as Status.Pending .

 Either avoid updating the massExitBlock , or find a different way for marking withdrawals as consumed.
 Incorporate the height  data into the WithdrawRequest  event, which would facilitate faster recognition and sorting of the pertinent

withdrawal requests, ensuring the efficient identification of withdrawals that require calls to TokenBridge.pendingWithdraw() .

CHRM�4  Contract Can Be Drained if There Are No Validators • Medium Fixed

Update
Marked as "Fixed" by the client. Addressed in: f08c9b2b2d585477114375264cb0a92f524c407b .

File(s) affected: Validator.sol

Description: The Validator.removeValidator()  function does not verify whether it is removing the last validator at a specific height.
Consequently, when the final validator of a given height is removed, the validatorHeights  array still includes that height, even though no
validators remain. This creates a vulnerability where users can submit false data to create a fake blockRid , which will still pass the
validator.isValidSignatures()  check, as no signatures would be required in this scenario.

Recommendation:
 Either require for there to always be at least one validator for a given block height, or delete the block height from the validatorHeights[]

array once the last validator is removed.
 Do not allow isValidSignatures()  to return true if there are no signers. Consider enforcing a minimum number of signers.

CHRM�5  
Validator Addition & Removal Is Vulnerable to Front-Running

• Medium Fixed

Update
Marked as "Fixed" by the client. Addressed in: 18934185980ccd30e418f3c8a3daab25364566f1 . The client provided the following
explanation:

Along with CHRM�2, we simplify chromia validator list management and only update the validator list in a unique contract
method to avoid front-running. Note: This front-running vuln is good finding. Thank you for pointing out this. For the current
version, these operations be manged by admin/owner account then we need to update the validator list, admin/owner
account wil temporarily pause the TokenBridge smart contract first and unpause it after they complete validator list update.
Chromia also need to clear communication about the step-by-step operations admin need to do when updating the validator
list. And in the next version of extened token bridge the validator list be managed by postchain/chromia system and we need
to consider about these kine of front-running vulns.

File(s) affected: Validator.sol

Description: addValidator()  and removeValidator()  manage the array of approved validators for a given block height. A transaction can
be approved before the full list of validators is up to date by front-running or reordering transactions. For example, if only one validator has signed
a block, and it is the only one that has been added to validators[height]  (with the remaining addValidator()  calls waiting in the
mempool), it is possible for a user to sandwich their call such that the sole validator is considered a majority.

Additionally, if a removeValidator()  call at height n  followed by an addValidator()  call at height n+1  enter the mempool, they can be
reordered such that the addValidator()  call is processed first, making the removeValidator()  call impossible to complete for the previous
height.

Exploit Scenario:



 Alice becomes a validator for the newest block.
 The contract owner submits addValidator()  calls to resubmit the full list of validators into the mempool.
 Alice reorders the transactions to sandwich a forged withdrawal right after her addValidator()  call.
 Given that she is the only validator listed for her withdrawal transaction, the withdrawal goes through and drains the contract.

Recommendation:
 Create a setValidators()  function such that all of the approved validators can be added and all unapproved validators can be removed for

a given height simultaneously.
 Avoid submitting calls to removeValidator()  and addValidator()  for different heights to the mempool simultaneously. Alternatively,

create a function that can perform these operations for different heights.

CHRM�6  Risk of Running Out of Gas on Old Withdrawals • Medium Fixed

Update
Marked as "Fixed" by the client. Addressed in: 18934185980ccd30e418f3c8a3daab25364566f1 . The client provided the following
explanation:

Due to the change in the way we manage the validator list on CHRM�2 then this issue should not happen anymore.

File(s) affected: TokenBridge.sol , Validator.sol

Description: The function Validator._getValidatorHeight()  searches from the most recent height down to 0 to find the closest height
that is less than the target height. This is done to get the right set of validators for a specific height. However, there is a risk that this search could
use up all the gas available for very old heights, especially in extreme cases.

The team mentioned that how often the validators change depends on their staking and is not known yet. If we assume a block time of 10 seconds
and changes in the validator set every 32 blocks (like Ethereum), this means a change happens every 320 seconds. This results in about 60 * 60 
* 24 * 365 / 320 = 98,550  changes each year. If checking validatorHeights[i]  costs at least 200 gas (only the SLOAD gas cost, in
practice it will be more), then finding a height from a year ago would need at least 98,550 * 200 = 19,710,000  gas. With Ethereum's current
average gas limit of 30M per block, the gas could run out after about 1.5 years.

The risk is marked as medium, not high, because it's likely that validator set changes happen less often in practice. Ethereum changes its validator
set every 32 blocks for randomness, but Chromia might not do this as frequently, though their exact change rate isn't known. Also, users usually
withdraw their funds soon rather than waiting a long time.

Recommendation: To fix this, consider using a binary search method instead of looking through each index one by one.

CHRM�7  Privileged Roles and Ownership • Medium Acknowledged

Update
Marked as "Acknowledged" by the client. The client provided the following explanation:

Not code commit need, just need clear communication with the community

File(s) affected: TokenBridge.sol

Description: Smart contracts will often have owner  variables to designate the person with special privileges to make modifications to the smart
contract.

TokenBridge.setBlockchainRid() � A setter for blockchainRid .
TokenBridge.pause()  and TokenBridge.unpause() � Pauses and unpauses the contract. A compromised owner can block all

withdrawals by permanently pausing the contract.
TokenBridge.allowToken() � Add a new supported ERC�20 token.
TokenBridge.increaseALICELimit() � Manually increase a user's ALICELimit .
TokenBridge.triggerMassExit() , TokenBridge.postponeMassExit() , and TokenBridge.updateMassExitBlock() �

Manage the triggering of a mass exit, in which users can redeem their tokens at a given snapshot.
TokenBridge.pendingWithdraw()  and TokenBridge.unpendingWithdraw() � Disable a withdrawal request for review during a

dispute period. A compromised owner could deny a user from withdrawing their tokens.
TokenBridge.fund() � Adds more tokens to the contract to facilitate withdrawals.
TokenBridge.emergencyWithdraw() � Allows the withdrawal of any amount of tokens after a specified timestamp. A compromised

owner can drain the wallet once the emergencyTimestamp  has passed.
Validator.addValidator()  and Validator.removeValidator() � Manages the list of validators for a given block height. A

compromised owner can modify the list of validators to deny withdrawals or forge their own withdrawals.

Recommendation: This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract
allows to the owner.



CHRM�8  
Risk of Updating Balance with Failed Transfer in TokenBridge.fund()

• Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: b9fdc108000120373366309843f8432fe109f0c0 .

File(s) affected: TokenBridge.sol

Description: The TokenBridge.fund()  function uses the transferFrom()  method without checking the return value, contrary to the EIP�20
standard stating:

Callers MUST handle false from returns (bool success). Callers MUST NOT assume that false is never returned!

If the call was not completed successfully, the _balances  mapping would be incorrectly updated.

Recommendation: Use safeTransferFrom()  instead of transferFrom() , or, ensure the return value of the transferFrom()  function is
checked.

CHRM�9  Signature Malleability • Low Acknowledged

Update
Marked as "Acknowledged" by the client. The client provided the following explanation:

Some hardware wallet will encounter the issue so we comment the check I think

File(s) affected: ECDSA.sol

Description: Signature malleability is a characteristic of the ECDSA �Elliptic Curve Digital Signature Algorithm) cryptographic algorithm used in
Ethereum and Solidity. It refers to the ability to produce different valid signatures for the same message by modifying the signature parameters.
This can occur due to certain mathematical properties of the ECDSA algorithm.

In the ECDSA  contract, the line require(uint256(s) <= 
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");  has
been commented out. This introduces the risk of signature malleability. From the perspective of this audit, the impact appears limited because
using a malleable signature still implies that the validator has signed. We did not identify any obvious exploits in the contracts stemming from this
vulnerability. However, this omission makes the ECDSA  library potentially hazardous for reuse.

Recommendation: Uncomment the line to reinstate the validation against the s  value in signatures. For more details, you can also refer to the
guidelines provided in Open Zeppelin reference implementation here.

CHRM�10   _balances  Inconsistency • Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: 5d57d1faa0ae7af1959d4f11493278272359a3a3 .

File(s) affected: TokenBridge.sol

Description: The TokenBridge  contract maintains a record of the total locked balance of a token using the _balances  mapping. This value
increases with deposit()  and fund()  calls and decreases with withdraw()  calls. However, the withdrawBySnapshot()  and
emergencyWithdraw()  functions transfer tokens out without reducing the _balances  value. These functions seem to be designed for

emergencies, so the necessity of updating _balances  may depend on the recovery steps that are expected to follow. If the use of these
functions indicates that the bridge is no longer functional and users are expected to migrate to new contracts, the current approach might be
acceptable.

Moreover, even if _balances  is not updated, transferring tokens that are not locked in the contract remains impossible. Therefore, the impact of
the _balances  inconsistency is considered low. However, there could be instances where the public _balances  variable is used by off-chain
components, which falls outside the scope of this audit. The team should investigate any potential issues that may arise from this.

Recommendation: The team should clearly define the recovery steps to be taken after a mass exit or emergency withdrawal. This clarification will
help determine whether it is necessary to adjust the _balances  values in such scenarios.

CHRM�11  Merkle Proof Library Implementation Weaknesses • Low Fixed

Update

https://eips.ethereum.org/EIPS/eip-20
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/f29307cfe08c7d76d96a38bf94bab5fec223c943/contracts/utils/cryptography/ECDSA.sol#L147


Marked as "Fixed" by the client. Addressed in: 84339ae2a113fe5a52ea636189f394f193892602 . The client provided the following
explanation:

 Fixed
 Fixed
 Second Pre-image Attack: Actually, the prefix on chromia gtv merkle tree is virtual tree that adding prefix into the value,

not prefix of the Merkle tree hash proof. So the prefix is just added to calculate the leaf's hash properly in smart contract
in Hash.hashGtvBytes32Leaf(), Hash.hashGtvBytes64Leaf and Hash.hashGtvIntegerLeaf(). So there's no fix for this."

File(s) affected: MerkleProof.sol , Hash.sol

Description: We observed several potential weaknesses in the current MerkleProof  library implementation:

 Invalid position  Data� The position  input of the verify()  and verifySHA256()  functions can be manipulated when position
exceeds the number of Merkle tree leaves. For example, in a Merkle tree with only four leaves, providing a position value of 3, 7, or 11 would
have an identical impact.

 Empty Leaf Bytes� Leaves with empty bytes can pass the inclusion check in the verify()  function. While this may be valid from a sparse
Merkle tree's perspective (as empty leaves are virtually part of the tree), it can lead to unexpected validation successes.

 Second Pre-image Attack (see: Merkle tree wiki�� Instead of validating a leaf, one could provide an intermediate node pretending to be the leaf
data, thereby conducting a second preimage attack.

We did not find any exploits leveraging these weaknesses during the audit:

 Invalid position  Data� Although invalid position data can be used, the Merkle proof validation only passes if the leaf node is indeed included.
The contracts that call the MerkleProof  do not rely further on the position data.

 Empty Leaf Bytes� We consider it impossible to find a pre-image of empty bytes that can be decoded and effectively used.
 Second Pre-image Attack� We consider it impossible to find a pre-image of the intermediate nodes that can be decoded and effectively used.

Also, from the discussion with the team, the nodes of the GTV merkle tree are with prefix but just the prefix is not part of the verification within
the contract code.

Despite no exploits being found that leverage these weaknesses, the team should be aware and consider fixing them to prevent future changes
from introducing issues.

Recommendation: We suggest adding some protections:
 Invalid position  Data� Verify that the position  is within the range [0, 2^proofs.length - 1] .
 Empty Leaf Bytes� Consider verifying that the leaf cannot be empty bytes.
 Second Pre-image Attack� Consider adding prefixes verification to the intermediate and leaf nodes as part of the merkle proof verification

function.

CHRM�12  
Risk of Gas Insufficiency for Users with Excessive Tokens During
Mass Exit

• Low Mitigated

Update
Marked as "Acknowledged" by the client. Addressed in: 8d4443e379c363b2dad46511ed76aec5194d1a64 . The client provided the
following explanation:

Yes, like you said in practical the number of tokens a user can hold is likely much lower than 3000. If this happen, we will
inform user to send several tokens into another account to reduce the total number of token on each account to avoid gas
limit. Further, we think that we need to check that the snapshot token must be the allowed token in the smart contract as well.
Otherwise, the withdrawal might be error.

File(s) affected: TokenBridge.sol

Description: The TokenBridge.withdrawBySnapshot()  function uses a for-loop to return all tokens belonging to a user. If a user possesses
too many tokens as per the snapshot data, there's a risk of gas insufficiency to complete the withdrawal of all their tokens.

For each token transfer, there is a basic cost involving two SSTORE  operations to update the balances of both the sender and the recipient. The
SSTORE  typically costs 2100 for accessing cold storage, plus 2900 for value updates (see: doc). Therefore, the minimum cost would be 5000 � 2

= 10,000 gas per token. Considering Ethereum's average block gas limit of 30M, a user can't hold more than 3000 tokens. However, this calculation
overlooks other gas costs, so in reality, the practical limit for the number of tokens a user can hold is likely much lower.

Recommendation: The team should consider conducting simulations to determine the actual token limit and inform users accordingly. This will help
ensure that users do not store an excessive number of tokens in a single account, avoiding potential withdrawal issues.

CHRM�13  User Can Create Misleading Event • Low Fixed

https://en.wikipedia.org/wiki/Merkle_tree
https://github.com/wolflo/evm-opcodes/blob/main/gas.md#a6-sload


Update
Marked as "Fixed" by the client. Addressed in: f2ff3e6d88b4799656cd36ffe921ab5d893e1778 .

File(s) affected: TokenBridge.sol

Description: In the TokenBridge.deposit()  function a user is free to supply the ft3_account_id  variable to anything they would like since
it is only used in the emitted event DespositedERC20() . A malicious user may therefore pass an incorrect value in order to emit a misleading
event.

Recommendation: Either validate the ft3_account_id  variable, or retrieve it from other information such as msg.sender .

CHRM�14  Missing Input Validation • Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: 0495fba7f28bbd5d348a80b2da9a4083931471a6 .

File(s) affected: Hash.sol , TokenBridge.sol , Validator.sol

Related Issue(s): SWC�123

Description: Input validation is crucial for maintaining system security and reliability. It helps to prevent errors and potential attacks by restricting
the range of inputs that attackers can use. We recommend adding input validations in the following areas:

 Hash.hashGtvBytes64Leaf() � This function does not verify that value.length == 64 , which is necessary to ensure it hashes only 64-
byte inputs. Currently, callers can provide inputs with more than 64 bytes.

 TokenBridge.allowToken() � The token  parameter can be a zero address. Allowing a zero address as a permitted token could
unexpectedly make verification bypasses easier.

 TokenBridge.pendingWithdraw()  and unpendingWithdraw() � The _hash  input can be an empty bytes32 . This could lead to the
_withdraw[]  mapping having a value for the empty key. Generally, having values for empty key mappings is risky, as they can be used

accidentally in unforeseen ways.
 TokenBridge.emergencyWithdraw() � Consider checking that both the beneficiary  and token  are not zero addresses. The risk of

mistakenly assigning the wrong beneficiary  is particularly high, as it could result in transfers to an uncontrolled destination.
 TokenBridge.initialize() � Validate that _validator  is a non-zero address.
 TokenBridge.postponeMassExit() � Set the previous massExitBlock  value to (0, 0) .
 TokenBridge._withdrawRequest() � Validate that blockchainRid  has been initialized.
 Validator.addValidator() � Consider validating that the _validator  is not an empty address to prevent the accidental addition of a

zero address as a validator.

Recommendation: Implement the suggested validations as detailed in the description above.

CHRM�15  Ownership Can Be Renounced • Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: 2e299a0226bfd9492f2e8406ddeeb5ca365d0be3 .

File(s) affected: TokenBridge.sol , Validator.sol

Description: If the owner renounces their ownership, all ownable contracts will be left without an owner. Consequently, any function guarded by
the onlyOwner  modifier will no longer be able to be executed.

Recommendation: Confirm that this is the intended behavior. If not, override and disable the renounceOwnership()  function in the affected
contracts. For extra security, consider using a two-step process when transferring the ownership of the contract (e.g. Ownable2Step  from
OpenZeppelin).

CHRM�16  Critical Role Transfer Not Following Two-Step Pattern • Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: 4e95c3b8f43d2e549b77b8a3b80486801c7823d2 .

File(s) affected: TokenBridge.sol , Validator.sol

Description: The owner of the contracts can call transferOwnership()  to transfer the ownership to a new address. If an uncontrollable
address is accidentally provided as the new owner address then the contract will no longer have an active owner, and functions with the
onlyOwner  modifier can no longer be executed.

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123


Recommendation: Consider using OpenZeppelin's Ownable2Step  contract to adopt a two-step ownership pattern in which the new owner must
accept their position before the transfer is complete.

CHRM�17  Missing Initializers • Low Fixed

Update
Marked as "Fixed" by the client. Addressed in: f165a56b8a5fc18fabeb595166f117cd522013a3 .

File(s) affected: TokenBridge.sol

Description: The TokenBridge  contract is missing a call to the initializers of PausableUpgradeable  and ReentrancyGuardUpgradeable .

Recommendation: Call __Pausable_init()  and __ReentrancyGuard_init()  in the initializer of the TokenBridge  contract.

CHRM�18  Tokens May Return Empty Metadata • Informational Acknowledged

Update
Marked as "Acknowledged" by the client. The client provided the following explanation:

The metadata token information is just additional information for the token. In the logic handle on chromia side only depends
on the token address so the token metadata is not mandatory.

File(s) affected: TokenBridge.sol

Description: Token metadata, such as the name, symbol, and decimal count, are emitted in some events. The metadata is gathered in calls to
_getTokenInfo() . However, the function silently fails for tokens that do not support metadata. This results in event emissions with empty

values for token metadata.

Recommendation: If it is a requirement for tokens to support metadata, validate that tokens support the required functions in allowToken() .

CHRM�19  Short Dispute Period • Informational Fixed

Update
Marked as "Fixed" by the client. withdrawOffset  can be made into an immutable variable. Addressed in:
78bd673aebcc285c64559b273fa7efa7ece7485c .

File(s) affected: TokenBridge.sol

Description: WITHDRAW_OFFSET  specifies the number of blocks that a user must wait between the approval of their withdrawal request and
executing the withdrawal. This dispute period allows the Chromia team to address any suspicious activity. WITHDRAW_OFFSET  is currently
initialized to 2  blocks, which makes sense for testing the contract, but is inadequate for deploying to production.

Recommendation: Increase WITHDRAW_OFFSET  to a dispute period sufficient for addressing any suspicious activity before deploying to
production. Consider making it an immutable value so that it is assignable on deployment, removing the need to modify the contract for test and
production environments.

CHRM�20  Expensive Gas Usage with Nested Loop • Informational Fixed

Update
Marked as "Fixed" by the client. Addressed in: 627d0c65f0a14e768dc933f2c1069af5560e813e .

File(s) affected: TokenBridge.sol , Validator.sol

Description: The Validator.isValidSignatures()  function uses a nested loop to check the validity of signatures. However, a single-layer
loop could be enough if the client code ensures that the addresses in the signers  input are in the correct order.

Currently, the code looks like this:

for (uint i = 0; i < signatures.length; i++) {
    for (uint k = 0; k < signers.length; k++) {



        require(isValidator(height, signers[k]), "Validator: signer is not validator");
        if (_isValidSignature(hash, signatures[i], signers[k])) {
            _actualSignature++;
            require(signers[k] > _lastSigner, "Validator: duplicate signature or signers is out of order");
            _lastSigner = signers[k];
            break;
        }
    }
}

It can be simplified to something like this:

for (uint i = 0; i < signatures.length; i++) {
    require(isValidator(height, signers[i]), "Validator: signer is not validator");
    if (_isValidSignature(hash, signatures[i], signers[i])) {
        _actualSignature++;
        require(signers[i] > _lastSigner, "Validator: duplicate signature or signers is out of order");
        _lastSigner = signers[i];
    }
}

This change requires the signers  input to be in the same order as the addresses that signed the signatures. By removing the nested loop, this
approach could help save gas.

Meanwhile, if the system can unify the format of the message to be signed, it would streamline the process. Currently, the contract allows both
prefixedProof  and hash  as valid message formats for signing. However, if only one format is used, it could simplify the contract's operations.

With a unified format, the need for the signers  array could be eliminated, and the code could simply rely on the signatures to recover the
signer's address, without having to cross-check against signers[i] . At present, because there are two potential addresses that can be
recovered (one from prefixedProof  and one from hash ), the code requires an additional reference for verification. Removing this need would
also eliminate the necessity for referencing signers .

Recommendation: Consider removing the nested loop if the client code can be updated accordingly. Additionally, if the message format can be
standardized, think about eliminating the signers  input from the function too.

CHRM�21  
Application Monitoring Can Be Improved by Emitting More
Events

• Informational Fixed

Update
Marked as "Fixed" by the client. Addressed in: e1c352cee28c5d3ecd9c9bad8f528cff21c54ea4 .

File(s) affected: TokenBridge.sol

Description: In order to validate the proper deployment and initialization of the contracts, it is a good practice to emit events. Also, any important
state transitions can be logged, which is beneficial for monitoring the contract, and also tracking eventual bugs or hacks. Below we present a non-
exhaustive list of functions that could emit events to improve application management:

TokenBridge.initialize()
TokenBridge.setBlockchainRid()
TokenBridge.allowToken()
TokenBridge.increaseALICELimit()
TokenBridge.triggerMassExit()
TokenBridge.postponeMassExit()
TokenBridge.updateMassExitBlock()
TokenBridge.pendingWithdraw()
TokenBridge.unpendingWithdraw()
TokenBridge.withdrawRequest()

Recommendation: Consider emitting the events.

CHRM�22  Unlocked Pragma • Informational Fixed

Update
Marked as "Fixed" by the client. Addressed in: 09f66721fafafdb09a56bab1cb3da323092ae851 .

File(s) affected: All files



Related Issue(s): SWC�103

Description: Every Solidity file specifies in the header a version number of the format pragma solidity (^)0.8.* . The caret ( ^ ) before the
version number implies an unlocked pragma, meaning that the compiler will use the specified version and above, hence the term "unlocked".

Recommendation: For consistency and to prevent unexpected behavior in the future, we recommend to remove the caret to lock the file onto a
specific Solidity version.

CHRM�23  Upgradability • Informational Acknowledged

Update
Marked as "Acknowledged" by the client. The client provided the following explanation:

Not code commit need, just need clear communication with the community

File(s) affected: TokenBridge.sol

Description: While upgradability is not a vulnerability in itself, users should be aware that the TokenBridge  can be upgraded at any time. This
audit does not guarantee the behavior of future contract upgrades.

Recommendation: The fact that the contract can be upgraded and reasons for future upgrades should be communicated to users beforehand.

CHRM�24  Re-Orgs May Lead to Double Spend • Undetermined Acknowledged

Update
Marked as "Acknowledged" by the client. The client provided the following explanation:

Not code commit need, just need clear communication with the community

File(s) affected: TokenBridge.sol , Validator.sol

Description: A reorg is when a sequence of blocks that were part of the blockchain gets substituted with a different sequence of blocks at some
later point in time. An event that was emitted before a reorg may no longer be included in the chain after the reorg. Therefore, a malicious attacker
could initiate a deposit, wait for it to be confirmed by the Chromia validators, and then reorg the blockchain such that the deposit is no longer
included. This will allow them to claim funds on the destination chain without ever having deposited funds in the source chain.

The Ethereum blockchain is only considered finalized after 2 epochs (roughly 12 minutes). Before then, while it is extremely difficult to execute a
reorg it is not impossible. Hence, the team should be aware of this possibility and be able to mitigate against it.

Though the functioning of the chromia validators is outside the scope of the audit, the consequences of the attack are severe and hence included
in the report.

Recommendation: Ensure that the state of the source chain is finalized before accepting an event on the destination chain.

Definitions
High severity � High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity � Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity � The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low impact
in view of the client's business circumstances.

Informational � The issue does not post an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined � The impact of the issue is uncertain.

Fixed � Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated � Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged � The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1� comments, documentation, README, FAQ; 2� business processes; 3� analyses showing
that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103


Appendix
File Signatures

The following are the SHA�256 hashes of the reviewed files. A file with a different SHA�256 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different SHA�256 hash could be (but is not necessarily) an indication of a changed condition or
potential vulnerability that was not within the scope of the review.

Contracts

db2...831 ./contracts/Validator.sol

e24...e0a ./contracts/Postchain.sol

390...230 ./contracts/Data.sol

d53...568 ./contracts/TokenBridge.sol

007...e0f ./contracts/utils/cryptography/Hash.sol

cb3...bf9 ./contracts/utils/cryptography/ECDSA.sol

4aa...05f ./contracts/utils/cryptography/MerkleProof.sol

Tests

49c...8fd ./test/erc20.test.ts

07f...4c8 ./test/utils.ts

4d5...29d ./test/bridge.test.ts

1e4...919 ./test/utility.test.ts

00f...544 ./test/nft.test.ts

Toolset
The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:
Slither   v0.8.3

Steps taken to run the tools:
 Install the Slither tool: pip3 install slither-analyzer
 Run Slither from the project directory: slither .

Automated Analysis
Slither

Slither analyzed 43 contracts with 102 detectors, finding 180 results. The relevant findings have been included in the main section of the report.

Test Suite Results
The test data was gathered by running yarn test .

Token Bridge Test
    Validators
      ✔ Admin can update validator(s) successfully (168ms)
    Deposit
      ✔ User can deposit ERC20 token to target smartcontract (179ms)
    Emergency Withdraw
      ✔ Emergency Withdraw (236ms)
    Withdraw by normal user
      ✔ User can request withdraw by providing properly proof data (1555ms)
    Withdraw via smart contract
      ✔ Integrate with smart contract (1410ms)
    Mass Exit
      ✔ only admin can manage mass exit (116ms)

  Token

https://github.com/crytic/slither
https://github.com/crytic/slither


    Mint
      ✔ Should mint some tokens
    Transfer
      ✔ Should transfer tokens between users
      ✔ Should fail to transfer with low balance

  Non Fungible Token
    Deposit NFT
      ✔ User can deposit NFT to target smartcontract (181ms)
    Withdraw NFT
      ✔ User can withdraw NFT by providing properly proof data (993ms)

  Utility Test
    Utility
      hash
        ✔ Non-empty node sha3 hash function
        ✔ Right empty node sha3 hash function
        ✔ Left empty node sha3 hash function
        ✔ All empty node
        ✔ hash gtv integer leaf 0
        ✔ hash gtv integer leaf 1
        ✔ hash gtv integer leaf 127
        ✔ hash gtv integer leaf 128
        ✔ hash gtv integer leaf 168
        ✔ hash gtv integer leaf 255
        ✔ hash gtv integer leaf 256
        ✔ hash gtv integer leaf 1023
        ✔ hash gtv integer leaf 1024
        ✔ hash gtv integer leaf 32769
        ✔ hash gtv integer leaf 1234567890
      Merkle Proof
        ✔ Verify valid merkle proof properly
        ✔ Invalid merkle proof
      SHA256 Merkle Proof
        ✔ Verify valid SHA256 merkle proof properly
        ✔ Invalid SHA256 merkle proof due to incorrect merkle root

  30 passing (10s)

Code Coverage
The test coverage was gathered by running yarn coverage . The code coverage has room for improvement. There are no tests for
TokenBridge.withdrawBySnapshot() , which is used to facilitate withdrawals during a mass exit. It is crucial that all core features are properly

tested. We encourage the team to strive for 100% code coverage.

File % Stmts % Branch % Funcs % Lines Uncovered
Lines

contracts/ 77.78 57.14 88 81.58

Data.sol 100 100 100 100

NFTBridge.sol 78.72 54 84.62 83.1 … 189,190,191

Postchain.sol 100 100 100 100

TokenBridge.sol 64.94 51.72 82.61 72.81
…
304,308,309

Validator.sol 83.72 63.33 100 88.24 … 72,73,74,77

contracts/token/ 46.15 25 55.56 46.15

AliceToken.sol 0 0 0 0 14,15,16,20,21



File % Stmts % Branch % Funcs % Lines Uncovered
Lines

ERC721Mock.sol 50 100 60 50 14,22

TestToken.sol 100 50 100 100

contracts/utils/cryptograp
hy/

85.11 79.17 88.89 87.72

ECDSA.sol 90 62.5 100 90.91 22

Hash.sol 100 100 100 100

MerkleProof.sol 68.42 75 66.67 76 … 51,52,53,55

contracts/utils/test/ 100 100 100 100

TestDelegator.sol 100 100 100 100

TokenBridgeDelegator.sol 100 100 100 100

All files 78.2 58.82 85.71 81.74

Changelog
2024�01�23 � Initial report
2024�02�20 � Final report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and the
Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in formal
verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has worked
with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked with include
Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the World Economic
Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT� OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites



You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites&aspo; owners. You agree that Quantstamp
are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity
for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply or mean that
Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for determining the extent
to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no responsibility for the use of
third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any output
generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp disclaims
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof,
including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree that your
access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols, platforms,
content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF,
INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL,
INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation provided for a
limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to unknown risks and
flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials identified in the report
and does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee its security, and may
not be represented as such. No third party is entitled to rely on the report in any way, including for the purpose of making any decisions to buy or
sell a product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume responsibility for any product or service
advertised or offered by a third party, or any open source or third-party software, code, libraries, materials, or information linked to, called by,
referenced by or accessible through the report, its content, or any related services and products, any hyperlinked websites, or any other websites
or mobile applications, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third party.
As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate.

© 2024 � Quantstamp, Inc. Chromia Token Bridge


