
ChromaWay
Consensus & Directory Chain
Security Assessment

June 18, 2024

Prepared for:

August Botsford and Ludvig Oberg
ChromaWay AB

Prepared by: Benjamin Samuels, Simone Monica, and Sam Alws

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 ChromaWay Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be business confidential information; it is
licensed to ChromaWay under the terms of the project statement of work and intended
solely for internal use by ChromaWay. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications, if published, is the Trail of Bits
Publications page. Reports accessed through any source other than that page may have
been modified and should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 ChromaWay Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6

EBFT component 6
Networking component 6
Directory chain 6

Project Goals 9
Project Targets 10
Project Coverage 12
Codebase Maturity Evaluation 15

EBFT Consensus & Networking 15
Directory Chain 17

Summary of Findings 19
Detailed Findings 21

1. Honest nodes may not revolt during a consensus revolt 21
2. Syncing nodes may be hijacked using weak subjectivity attacks 23
3. Revolts may succeed without the necessary quorum in asynchronous conditions
25
4. Validators are miscounted when determining whether to transition from
HaveBlock to Prepared 27
5. Wrong condition when setting to fetch a block in the wait state 29
6. packBlockRange returns the packet is not full even when there are more blocks to
be added 31
7. Liveness violation under asynchronous network conditions 33
8. Slowloris denial-of-service attack 36
9. Incorrect check in require_blockchain function 37
10. Missing after_provider_updated when updating a provider’s state 39
11. Provider state proposals can create duplicate entities with the same keys 40
12. Insufficient check allows for voter sets to be made unusable accidentally 42
13. Potential out-of-bounds array index due to insufficient require statement 44
14. Incorrect staking_requirement_dapp_provider_total_stake_usd default value 45
15. Incorrect conversion of CHR to USD 46

Trail of Bits 3 ChromaWay Security Assessment
PUBLIC

16. Action points can be stolen 47
17. Incorrect logic in propose_minting allows for one vote to be forged 49
18. Users are forced to pay for the container expired time when renewing it 51
19. Time-of-check/time-of-use issues for proposals 52
20. Users can avoid paying the upgraded container cost for a certain duration 54
21. Required staking amounts are in USD rather than CHR 57
22. Division by zero when calculating rewards 58
23. Blockchain move proposals only need permission from destination, not source
59
24. Missing input validation on setter functions 60
25. Dapp providers can circumvent rate limits by creating more dapp providers 63
26. Rate limits may be insufficient to prevent Rell denial-of-service attacks 64

A. Vulnerability Categories 67
B. Code Maturity Categories 69
C. Code Quality Issues 71
D. Testing Guidance and Recommendations 74

Trail of Bits 4 ChromaWay Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Mary O'Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Benjamin Samuels, Consultant Simone Monica, Consultant
benjamin.samuels@trailofbits.com simone.monica@trailofbits.com

Sam Alws, Consultant
sam.alws@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

April 25, 2024 Pre-project kickoff call

May 6, 2024 Status update meeting #1

May 13, 2024 Status update meeting #2

May 17, 2024 Status update meeting #3

May 28, 2024 Status update meeting #4

June 3, 2024 Status update meeting #5

June 10, 2024 Delivery of report draft

June 10, 2024 Report readout meeting

June 18, 2024 Delivery of comprehensive report

Trail of Bits 5 ChromaWay Security Assessment
PUBLIC

Executive Summary

Engagement Overview
ChromaWay engaged Trail of Bits to review the security of multiple components of the
ChromaWay blockchain. This includes ChromaWay’s EBFT consensus system, its networking
stack, and its Directory Chain implementation.

A team of three consultants conducted the review from April 29 to June 7, 2024, for a total
of 13 engineer-weeks of effort. Our testing efforts focused on the properties of the
system’s consensus, denial-of-service (DoS) attacks against the networking stack, and
various malicious attacks against the system’s Directory Chain. With full access to source
code and documentation, we performed static and dynamic testing of the targets, using
automated and manual processes.

Observations and Impact
EBFT component
We found two high-severity issues relating to the EBFT component. The first is a weak
subjectivity issue (TOB-CHROMAWAY-2) that could allow nodes to sync to an incorrect chain
in the future. The second (TOB-CHROMAWAY-7) is a theoretical consensus issue that affects
the network’s liveness properties, and is exploitable without the presence of an active
attacker.

Networking component
We found one medium-severity issue in the networking component that could lead to a
Slowloris-style DoS attack (TOB-CHROMAWAY-8). No other findings were identified for this
component.

Directory chain
We found four high-severity issues relating to the directory chain. First, conversions
between US dollars and CHR tokens are done incorrectly, resulting in conversions that are
incorrect by orders of magnitude (TOB-CHROMAWAY-15). Another issue
(TOB-CHROMAWAY-16) allows for action points to be stolen by transferring a negative
amount of points to another user. The third issue (TOB-CHROMAWAY-23) allows for a
blockchain to be transferred to another chain with permission from only one member of its
deployer set. The final issue (TOB-CHROMAWAY-25) allows for a DoS attack in which a dapp
provider creates a large number of extra dapp providers.

Lastly, we found a medium-severity issue (TOB-CHROMAWAY-20) that enables a user to
avoid paying the upgraded cost of a container. This highlights a pattern that can happen
when sending a message and the handler function uses a variable that can be modified by
another operation.

Trail of Bits 6 ChromaWay Security Assessment
PUBLIC

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that ChromaWay take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of direct remediation or as part of any refactoring that may occur
when addressing other recommendations.

● Improve Kotlin test coverage. At the time of the engagement, EBFT’s unit test
coverage was measured at 46% branch coverage, and the networking component
was measured at 15% branch coverage. This is relatively low coverage for a protocol
with value-at-stake. We recommend at least 60% branch coverage at the absolute
minimum, with 70-95% coverage recommended for mature projects. Guidance on
how to improve ChromaWay’s test coverage is provided in appendix D.

● Add test coverage measurement to Rell. At the time of the engagement, Rell does
not have a mechanism to measure test coverage, making it much harder to
objectively measure how comprehensive the Directory Chain’s test suite is. Given
Rell’s operational similarity to a smart contract programming language, we
recommend aiming for 90%-100% unit test coverage, the same recommendation we
provide for Solidity smart contracts.

● Migrate to a gossip-based messaging system. EBFT’s use of a poll-based
messaging system makes it much easier for entities to attack its consensus using
balancing and timing attacks, as described in TOB-CHROMAWAY-7. We recommend
migrating to libp2p to allow validators to gossip about the states of other validators
in the network, drastically increasing the complexity of balancing attacks. Migration
to libp2p would also encrypt ChromaWay’s gossip.

● Document centralization risks. ChromaWay’s documentation should include a
page about the system’s centralization risks, going into detail about what the system
providers can and cannot do using proposals and discussing the economy chain’s
admin user.

● Develop a standard event logging system. Dapp developers should have an
interface to easily access the log messages being produced by their dapps.
ChromaWay developers could use this same system to more easily view logs
produced by the directory chain.

● Add fuzz testing to Rell. This would greatly improve the quality and coverage of the
directory chain’s test code. Property-based fuzzing is considered the de-facto
standard for testing smart contract languages like Solidity, and lacking this tool may
put Rell at a disadvantage compared to other blockchains.

Trail of Bits 7 ChromaWay Security Assessment
PUBLIC

https://libp2p.io/

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 6

Medium 6

Low 5

Informational 6

Undetermined 3

CATEGORY BREAKDOWN

Category Count

Access Controls 1

Data Validation 8

Denial of Service 3

Timing 1

Undefined Behavior 13

Trail of Bits 8 ChromaWay Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the ChromaWay EBFT
Consensus and Directory Chain. Specifically, we sought to answer the following
non-exhaustive list of questions:

● Do nodes correctly revolt when a revolting consensus is formed?

● Does the poll-based messaging model used in EBFT introduce new attack vectors?

● Do syncing nodes check for consensus properly?

● Do validators correctly discard invalid proposed blocks?

● Are there any synchronicity issues present that may cause validators to stall, or
subsequently cause the chain to halt?

● Are there viable DoS attacks against the system’s networking stack?

● Is it possible for a proposal to pass without the correct number of legitimate votes?

● Are proposals applied correctly, without unintended side effects?

● Are proposals’ preconditions checked correctly?

● Are the rewards correctly computed?

● Are the operations correctly rate limited by action points?

● Is it possible to steal action points?

● Is it possible to underpay or overpay for a lease?

Trail of Bits 9 ChromaWay Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the targets listed below.

ChromaWay EBFT
Repository https://gitlab.com/chromaway/postchain

Path postchain-base/src/main/kotlin/net/postchain/ebft

Commit Hash efdc42fe91738fd70833059be2304ae705b570f8

Type Kotlin

ChromaWay Networking
Repository https://gitlab.com/chromaway/postchain

Path postchain-base/src/main/kotlin/net/postchain/network

Commit Hash efdc42fe91738fd70833059be2304ae705b570f8

Type Kotlin

Trail of Bits 10 ChromaWay Security Assessment
PUBLIC

ChromaWay Directory Chain
Repository https://gitlab.com/chromaway/core/directory-chain

Paths src/cm_api

src/common

src/common_proposal

src/economy_chain

src/economy_chain_claim_tchr

src/economy_chain_in_directory_chain

src/management_chain_common

src/model

src/proposal

src/proposal_blockchain

src/proposal_blockchain_move

src/proposal_cluster

src/proposal_cluster_anchoring

src/proposal_container

src/proposal_provider

src/proposal_voter_set

src/roles

src/signer_list_update

Commit Hash 2f051d48021550e9e60fefbe055143e448828a82

Type Rell

Trail of Bits 11 ChromaWay Security Assessment
PUBLIC

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● ChromaWay EBFT: This component implements the blockchain’s consensus
algorithm, EBFT. EBFT is a Byzantine fault-tolerant consensus algorithm that uses a
poll-based messaging system in lieu of the more common gossip-based system.

○ Synchronization: There are two synchronization modes—a fast sync for
initial synchronization and a slow sync for read-only nodes to follow the
chain head. We reviewed each mode to ensure that it correctly checks EBFT
consensus rules, checks for block validity, and checks that blocks are
correctly chained together. We also assessed the system’s ability to tolerate
weak subjectivity attacks and recover from a peer connection failure.

○ Consensus: The system’s consensus is based on two-round PBFT (practical
Byzantine fault tolerance) with instant finality. We compared the consensus
against two relatively recent implementations of PBFT (Tendermint and
HotStuff) to identify potential weaknesses that may be exclusive to EBFT. We
also reviewed the EBFT’s state machine and state transition criteria for
potential attacks, bugs, and issues that may result in a consensus halt. This
review included the “revolt” feature, EBFT’s implementation of how to handle
PBFT view changes.

○ Messaging: EBFT uses a poll-based messaging system, where all validators
connect directly to the other validators in the active set and only relay
information about their own individual states. We reviewed this system to
determine whether poll-based messaging introduces any consensus
weaknesses or makes certain consensus attacks easier to execute. We also
reviewed this system to identify potential cross-peer polling attacks, where
one peer would send an unprompted response to a victim validator.

● ChromaWay Networking: This component implements the blockchain’s
networking stack, which is used to facilitate consensus and communication between
master nodes and sidechain containers. It is implemented using Netty, and we
reviewed it to ensure that messages are signed and validated properly. This system
was also reviewed for potential DoS attacks.

Trail of Bits 12 ChromaWay Security Assessment
PUBLIC

● ChromaWay Directory Chain: This component, written in Rell, is responsible for
managing the ChromaWay economy and orchestrating the various containers and
blockchains involved in the ChromaWay system.

○ Economy chain: This component manages the economy part of the system,
including staking, rewards, and paying the container’s lease. We looked for
ways to bypass the staking requirements and still get the rewards. We also
analyzed how the rewards are computed and if it is possible to manipulate
them to get more. We also assessed whether container leases can be
undercharged or overcharged.

○ Proposals: Proposals allow users to suggest and vote on administrative
actions, such as creating and deleting blockchains and containers. We
reviewed the directory chain’s proposal system to ensure that proposals
could not be passed or rejected without receiving the proper number of
legitimate votes. In addition, we reviewed the directory chain’s specific
implementation of different actions that can be proposed. We mainly
checked that these proposals are assigned to the correct voter sets, that they
are applied correctly, and that all necessary preconditions are checked
before applying them.

○ The directory chain also included some auxiliary/helper code, which we also
reviewed.

Coverage Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. The following list outlines the coverage limitations of the engagement and
indicates system elements that may warrant further review:

● Some components within the audit's scope (EBFT, Directory Chain) are critically
dependent on other ChromaWay constructions outside of the audit’s scope (e.g., ft3,
GTV, Postchain Base, Rell Interpreter). Since we did not review these components
during this engagement, they may contain issues that critically impact the operation
of components in this engagement’s scope.

● We did not review the system’s various hashing constructions, such as block hash,
transaction hash, and other critical hashes, because they were out of scope.

● We did not review the system’s various cryptography implementations because they
were out of scope. As such, issues related to signature malleability, signatory
duplication, signature verification, nonces, and other cryptography-specific attacks
were not analyzed.

Trail of Bits 13 ChromaWay Security Assessment
PUBLIC

● The Rell interpreter and language specification were not in the scope of the review.
As such, issues related to runtime determinism, correctness, and DoS in the
interpreter were not analyzed.

● Block construction, transaction verification, and mempool components were not in
the scope of the review. As such, issues related to block verification, transaction
verification, mempool admission, DoS, and maximal extractable value (MEV) were
not analyzed.

● The Directory Chain implements special authorized operations that may be called
only by a block proposer. These operations are highly privileged, and misuse can
lead to a loss of funds. We did not review the code that validators use to verify the
correctness of calls to authorized operations because it is out of scope.

● The ft4 library, used to handle token ownership and transfers, and used in some
cases to handle authentication, was out of scope for this review.

Trail of Bits 14 ChromaWay Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

EBFT Consensus & Networking

Category Summary Result

Auditing The ChromaWay EBFT and Networking components
adequately log critical events that occur within their
scope.

Satisfactory

Authentication /
Access Controls

Peer-to-peer consensus messages are adequately
authenticated using signatures.

Satisfactory

Complexity
Management

The EBFT code has some challenges around readability,
coupling of data and code, and the overuse of first-class
functions. This should be expected to some extent, as
Kotlin purposefully intermingles the properties of
object-oriented languages with those of functional
languages. However, we believe some of these patterns
have been a detriment to the complexity management
and testability of the codebase. Guidance on how to
improve the codebase’s complexity management is
provided in appendix C and appendix D.

Moderate

Cryptography
and Key
Management

The system’s cryptography and key management
capabilities were out of the scope of the engagement.

Not
Applicable

Decentralization ChromaWay’s EBFT implements a PBFT that is robust to
scenarios where a malicious actor controls less than ⅓ of
the validator set. However, ChromaWay’s use of a
messaging system where validators cannot gossip about
the state of other validators creates a scenario where a
single validator can trivially perform balancing attacks
against the network, such as the attack demonstrated in
TOB-CHROMAWAY-7.

Weak

Trail of Bits 15 ChromaWay Security Assessment
PUBLIC

This messaging system does not directly contradict the
EBFT’s safety or asynchrony assumptions, but does make
it much more practical to perform complex balancing
attacks.

In contrast, in a gossip-based messaging system, a
balancing attack requires the attacker to have
extraordinary control over the global network conditions,
drastically increasing the complexity of such attacks.

ChromaWay’s criteria for a validator to become part of its
validator set, along with the validator set’s expected
composition, are out of the scope of this engagement
and excluded from this analysis.

Documentation The documentation for the EBFT module was high-quality
and thorough; however, the networking stack
documentation could be improved. Migrating to libp2p
would help alleviate this issue.

Satisfactory

Low-Level
Manipulation

Kotlin does not expose low-level runtime primitives. Not
Applicable

Memory Safety
and Error
Handling

ChromaWay’s use of Kotlin does not have any memory
safety concerns, and its error handling is satisfactory.

Satisfactory

Testing and
Verification

The EBFT and networking component’s unit test coverage
was measured at 46% and 15% at the time of the
engagement. Our general guidance for blockchain nodes
is for engineers to target 50% branch coverage at the
absolute minimum, with a steadily increasing target of up
to 70-95% depending on the project’s maturity. See
appendix D for guidance on how to improve the project’s
testing maturity.

Weak

Transaction
Ordering

The system’s block construction components were
outside of the engagement's scope. However, given
ChromaWay’s use of a priority system instead of gas,
additional investigation is recommended to determine
the system’s resilience to transaction ordering attacks.

Further
Investigation
Required

Trail of Bits 16 ChromaWay Security Assessment
PUBLIC

Directory Chain

Category Summary Result

Arithmetic Arithmetic is not done often in the directory chain. When
it is, decimals and big ints are typically used, decreasing
the chance of overflows or rounding errors. In one case,
we found that a division by zero is possible
(TOB-CHROMAWAY-22). In another case, we found that
conversions between CHR tokens and US dollars are
done incorrectly (TOB-CHROMAWAY-15).

Moderate

Auditing The directory chain codebase often emits log messages
when important events happen. ChromaWay developers
can view these log messages because they run their own
nodes. However, this is a fairly ad hoc solution; ideally, a
standardized interface for viewing log messages should
be developed.

Moderate

Authentication /
Access Controls

Directory chain operations authenticate users by
checking the operation context’s signer list, or by calling
the ft4.auth.authenticate function. This is done
correctly throughout the codebase, with one exception
(TOB-CHROMAWAY-17). There is no standard convention
used to authenticate operations; if such a convention
were developed, it would be easier to check that
operations authenticate correctly.
Many important operations require proposals to be
voted on before they can be applied. We found that this
system is implemented securely, with the exception of
some time-of-check/time-of-use discrepancies
(TOB-CHROMAWAY-19).

Moderate

Complexity
Management

The in-scope code that involves the economy chain and
proposals is well-structured overall. The functions are
clearly scoped and have a single job to do. Although
there appears to be a naming convention, it is not
explicitly documented; documenting it would allow for a
quicker understanding of functions’ responsibilities.

Satisfactory

Decentralization The directory chain system is fairly centralized; the
economy chain’s admin user can unilaterally set
transaction fees above 100% (TOB-CHROMAWAY-24), and
system providers have various ways of bringing the

Moderate

Trail of Bits 17 ChromaWay Security Assessment
PUBLIC

system to a halt if enough of them collude to vote on a
proposal.

ChromaWay’s documentation mentions system
providers, but not the economy chain’s admin user. The
documentation should have a page that specifically
addresses the system’s centralization risks.

Documentation The documentation provides a high-level explanation of
the system, and the more technical documentation is
focused on explaining each possible operation with a
brief description, roles needed for that operation, and
arguments’ types. However, it would be beneficial to have
a more thorough description of the arguments’ types and
to document the possible values for each argument so it
is easier to implement the appropriate validation in the
code. Additionally, it could be beneficial to perform an
analysis that documents the interaction and
dependencies of operations to avoid issues like
TOB-CHROMAWAY-20.

Satisfactory

Testing and
Verification

There is currently no way to measure Rell test coverage;
the ChromaWay team has stated that they are currently
working on this.

Certain issues included in this report indicate that test
coverage is lacking and does not sufficiently cover the
code’s edge cases (TOB-CHROMAWAY-16,
TOB-CHROMAWAY-22, TOB-CHROMAWAY-24,
TOB-CHROMAWAY-15).

There is currently no system in place to fuzz test Rell
code. Such a system should be developed to make Rell
competitive with Solidity.

Weak

Transaction
Ordering

We have not found any issues where transaction
ordering can be used to extract value from users.
Because of the types of operations available, it is unlikely
that there is any way for this to happen.

Satisfactory

Trail of Bits 18 ChromaWay Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Honest nodes may not revolt during a consensus
revolt

Undefined
Behavior

Medium

2 Syncing nodes may be hijacked using weak
subjectivity attacks

Data Validation High

3 Revolts may succeed without the necessary
quorum in asynchronous conditions

Undefined
Behavior

Low

4 Validators are miscounted when determining
whether to transition from HaveBlock to Prepared

Undefined
Behavior

Low

5 Wrong condition when setting to fetch a block in
the wait state

Undefined
Behavior

Low

6 packBlockRange returns the packet is not full
even when there are more blocks to be added

Undefined
Behavior

Informational

7 Liveness violation under asynchronous network
conditions

Timing High

8 Slowloris denial-of-service attack Denial of Service Medium

9 Incorrect check in require_blockchain function Data Validation Undetermined

10 Missing after_provider_updated when updating a
provider’s state

Undefined
Behavior

Undetermined

11 Provider state proposals can create duplicate
entities with the same keys

Undefined
Behavior

Informational

12 Insufficient check allows for voter sets to be made
unusable accidentally

Data Validation Informational

Trail of Bits 19 ChromaWay Security Assessment
PUBLIC

13 Potential out-of-bounds array index due to
insufficient require statement

Data Validation Informational

14 Incorrect
staking_requirement_dapp_provider_total_stake_u
sd default value

Undefined
Behavior

Low

15 Incorrect conversion of CHR to USD Undefined
Behavior

High

16 Action points can be stolen Data Validation High

17 Incorrect logic in propose_minting allows for one
vote to be forged

Data Validation Medium

18 Users are forced to pay for the container expired
time when renewing it

Undefined
Behavior

Medium

19 Time of check / time of use issues for proposals Data Validation Low

20 Users can avoid paying the upgraded container
cost for a certain duration

Undefined
Behavior

Medium

21 Required staking amounts are in USD rather than
CHR

Undefined
Behavior

Informational

22 Division by zero when calculating rewards Undefined
Behavior

Informational

23 Blockchain move proposals only need permission
from destination, not source

Access Controls High

24 Missing input validation on setter functions Data Validation Medium

25 Dapp providers can circumvent rate limits by
creating more dapp providers

Denial of Service High

26 Rate Limits may be insufficient to prevent Rell
Denial-of-Service attacks

Denial of Service Undetermined

Trail of Bits 20 ChromaWay Security Assessment
PUBLIC

Detailed Findings

1. Honest nodes may not revolt during a consensus revolt

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-1

Target: EBFT

Description
Honest nodes check for a consensus among revolting nodes only if the honest node itself is
revolting, as shown in figure 1.1. Revolts represent a consensus view-change, where there
is a problem with the network and a new leader must be selected. Since the nature of the
problem is unknown, honest nodes must assume that the issue may be related to the
honest node’s own operation in addition to potentially being caused by a malicious leader
node.

This means that an honest node must constantly check for a consensus among revolters,
even if the honest node itself does not see any reason for a revolt to be triggered.

if (myStatus.revolting) {
when (potentiallyRevolt()) {

FlowStatus.Break -> return false
FlowStatus.Continue -> return true
FlowStatus.JustRunOn -> Unit // nothing, just go on

}
}

Figure 1.1: In the shouldRecomputeStatusAgain function, nodes will only check whether
other nodes are revolting when the node itself is also revolting.

(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa
nager.kt#587–593)

Exploit Scenario
Consider a leader node connected to the network over an unreliable connection. The
leader has a block available, but only a minority of nodes on the network are able to query
the leader for the block. The majority that did not receive a block begin a revolt and have
enough votes to succeed in revolting. However, the minority of nodes that did receive the
block will stall since they have no way of observing that a revolt occurred.

Trail of Bits 21 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L587-593
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L587-593

Recommendations
Short term, modify the code so nodes will always check whether a revolt is occurring and
whether said revolt has consensus support, even if the node itself is not revolting.

Long term, consider running advanced fuzzing or chaos testing against multi-node
networks to test for edge conditions in the system’s consensus.

Trail of Bits 22 ChromaWay Security Assessment
PUBLIC

2. Syncing nodes may be hijacked using weak subjectivity attacks

Severity: High Difficulty: High

Type: Data Validation Finding ID: TOB-CHROMAWAY-2

Target: EBFT Synchronization

Description
ChromaWay’s chain synchronization mechanism is vulnerable to weak subjectivity attacks:
a category of attacks where an attacker constructs an alternate fork of the blockchain using
purchased or leaked validator keys that once formed a Byzantine majority of validators.

Subjectivity is a property of blockchains that refers to the amount of social information
required to agree on the current state of the blockchain with no knowledge other than the
hash of the genesis block. Proof-of-stake blockchains universally exhibit weak subjectivity,
meaning that some level of social interaction is required to synchronize a node from
genesis to the latest block head. If a user tries to sync a proof-of-stake blockchain without
the required social interaction, or if the chain does not support the required social
interaction, they expose themselves to the possibility of weak subjectivity attacks.

Weak subjectivity attacks take advantage of the fact that proof-of-stake blockchains need a
way to add and remove validators from their validator sets. This means an entity that once
controlled a Byzantine majority of the system’s voting power may later withdraw from the
system, reducing their own risk but retaining the ability to control blockchain’s history at
the point in time when they held the majority of the system’s stake.

The entity would then construct a competing blockchain, forking from the main chain at the
point when they controlled the Byzantine majority of voting power. The entity would then
gossip their competing blockchain to naive syncing nodes that do not have any way to
identify the malicious fork as invalid. Since BFT-based chains do not have a notion of forks
or chain-weight, there is no way for nodes following the malicious chain to re-org to the
honest chain.

In ChromaWay, there is no slashing, so this issue may be used to orchestrate malicious
forks even for validators that are still present in the validator set.

Exploit Scenario
An attacker purchases or steals validator keys corresponding to a Byzantine majority of the
chain’s voting power at a specific time in the chain’s history. They use the validator keys to
construct an alternate chain history, and use it to exclude certain transactions from the
malicious chain’s history, essentially creating a double-spend attack.

Trail of Bits 23 ChromaWay Security Assessment
PUBLIC

Recommendations
Short term, add a checkpoint parameter to ChromaWay node’s sync containing a specific
recent block height and blockRID. If the node syncs up to the specified block height and the
blockRID does not match, halt synchronization and alert the user.

Long term, establish a robust weak-subjectivity checkpointing system to ensure that
syncing clients always arrive at the correct chain head. These checkpoints would allow a
syncing client to be certain it arrives at the correct chain head as long as the checkpoint is
not older than the “weak subjectivity period”: a protocol-chosen duration directly correlated
to the amount of time allocated to the “exit period.”

The “exit period” is an additional mitigation that prevents validators from leaving the
validator set and unbonding their stake in block N, then immediately constructing alternate
forks for blocks n < N. When validators are demoted or plan to leave the validator set,
their stake remains locked for the exit period to allow one or more weak subjectivity
checkpoints to protect against the rewriting of history. For this mitigation to be effective,
slashing must also be implemented to allow for punishing validators who construct
alternate chain histories, especially during their exit period.

References
● Weak Subjectivity (ethereum.org)

Trail of Bits 24 ChromaWay Security Assessment
PUBLIC

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/weak-subjectivity/

3. Revolts may succeed without the necessary quorum in asynchronous
conditions

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-3

Target: EBFT

Description
Poorly synchronized validators in a revolting state fail to remove their revolting status when
a revolt occurs that they did not observe directly. This vulnerability allows an attacker to
orchestrate a revolt against a proposer without the required quorum, since the
non-synchronized validator will erroneously continue to revolt into the following round.

The root vulnerability is caused by a bug in potentiallyDoSync(): when a revolt occurs
too quickly for a validator to notice, the code in figure 3.1 handles the scenario and
increments the validator’s round number. However, this code fails to clear the validator’s
revolting status, allowing the revolt for a previous round to unintentionally “carry over” into
the next round.

} else if (sameHeightHigherRounds.size >= this.quorum) {
myStatus.serial += 1
myStatus.round = sameHeightHigherRounds.sortedDescending()[this.quorum - 1]
if (myStatus.state == NodeBlockState.HaveBlock) {

logger.info("Resetting block in HaveBlock state due to new round")
resetBlock()

}
return FlowStatus.Continue

Figure 3.1: A revolt occurred as indicated by the number of nodes at a higher height exceeding
the quorum, but the node’s revolting status is not reset.

(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa
nager.kt#427–434)

Exploit Scenario
This attack can theoretically allow an attacker controlling a non-quorum number of nodes
on the network (say, two out of four), to launch a revolt against an honest primary node.
Using this attack, a malicious actor may work to deny the primary node block proposal
rewards or censor the proposed block's contents.

However, it should be noted that an attacker who controls 50% of the network can also

Trail of Bits 25 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L427-434
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L427-434

choose to attack the network’s liveness to achieve the same goals instead of orchestrating
a complex revolt.

There is additional risk to this finding in a scenario where EBFT adds slashing in a future
update: if a validator accidentally performs a revolt due to network issues that cause its
stake to get slashed, the impact of the finding is much greater.

Recommendations
Short term, modify potentiallyDoSync() so that it clears the validator’s revolting flag in
scenarios where the round is changed without direct observation of the revolt.

Long term, add additional tests and consider investing in property-based testing to ensure
that node status transitions are always valid.

Trail of Bits 26 ChromaWay Security Assessment
PUBLIC

4. Validators are miscounted when determining whether to transition from
HaveBlock to Prepared

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-4

Target: EBFT

Description
The countNodes() function, shown in figure 4.1, fails to account for the round number
when counting nodes in the specified state. The countNodes() function is used by
handleHaveBlockState() to determine whether the validator should transition from the
HaveBlock state to the Prepared state. Since it fails to pass the current validator’s current
round, it is possible for the function to count validators that are in the HaveBlock state
with the same blockRID, but different rounds. This will cause a safety violation since the
validator will commit to a blockRID at a specific round that does not meet the consensus
threshold.

private fun countNodes(state: NodeBlockState, height: Long, blockRID: ByteArray?):
Int {

var count = 0
for (ns in nodeStatuses) {

if (ns.height == height && ns.state == state) {
if (blockRID == null) {

if (ns.blockRID == null) count++
} else {

if (ns.blockRID != null && ns.blockRID.contentEquals(blockRID))
count++

}
}

}
return count

}

Figure 4.1: The countNodes() function fails to account for nodes that are on a different round.
(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa

nager.kt#63–76)

Recommendations
Short term, add a roundId parameter to countNodes() to allow the function to account
for the node’s round ID.

Trail of Bits 27 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L63-76
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L63-76

Long term, consider improving the naming scheme or documentation of certain functions
to help establish an understanding of what the function is actually trying to accomplish. In
addition, add positive and negative unit tests to help establish the properties of various
functions.

Trail of Bits 28 ChromaWay Security Assessment
PUBLIC

5. Wrong condition when setting to fetch a block in the wait state

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-5

Target: EBFT

Description
The handleWaitBlockState function has the job of executing the appropriate action
when a node is in a wait state. If it is a primary node, it sets the intent to
BuildBlockIntent; otherwise, it sets the current node’s intent to
FetchUnfinishedBlockIntent, which will try to fetch the block from the primary node.
However, the condition to set the intent to FetchUnfinishedBlockIntent is wrong
because it checks if the current intent is equal to FetchUnfinishedBlockIntent and is
waiting for the myStatus.blockRID (at that point, this is always null). However, this
condition should check if the current intent is waiting for the primaryBlockRID.

fun handleWaitBlockState(): Boolean {
if (isMyNodePrimary()) {

if (intent !is BuildBlockIntent) {
intent = BuildBlockIntent
return true

}
} else {

val primaryBlockRID = this.nodeStatuses[this.primaryIndex()].blockRID
if (primaryBlockRID != null) {

val _intent = intent
if (!(_intent is FetchUnfinishedBlockIntent &&

_intent.isThisTheBlockWeAreWaitingFor(myStatus.blockRID))) {
intent = FetchUnfinishedBlockIntent(primaryBlockRID)
return true

}
} else {

return if (intent == DoNothingIntent) {
false

} else {
intent = DoNothingIntent
true

}
}

}
return false

}

Trail of Bits 29 ChromaWay Security Assessment
PUBLIC

Figure 5.1: The handleWaitBlockState() function
(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa

nager.kt#L549-574)

While this issue does not compromise the correctness of execution, the major
consequence is that when a non-primary node is in a wait state, it always enters the if
branch and sets the intent to FetchUnfinishedBlockIntent while returning true,
meaning the current state has changed. The handleWaitBlockState function is called in
the shouldRecomputeStatusAgain function when the current state is waiting, and the
latter is called in a loop of 1,000 times in the recomputeStatus function (figure 5.2) until
the current state does not change. Given that it incorrectly always returns that the state
has changed, the loop is always iterated unnecessarily 1,000 times.

fun recomputeStatus() {
for (i in 0..1000) {

if (!shouldRecomputeStatusAgain()) break
}

}

Figure 5.2: The recomputeStatus() function
(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa

nager.kt#L353-357)

Exploit Scenario
Node A is in a wait state. Instead of iterating a few times in the recomputeStatus
function, it iterates 1,000 times, consuming unnecessary resources.

Recommendations
Short term, correct the condition to check the primaryNode’s blockRID
_intent.isThisTheBlockWeAreWaitingFor(primaryBlockRID).

Long term, consider checking how many resources each integration test uses (e.g., for
profiling) and analyze for possible discrepancies from the expected behavior.

Trail of Bits 30 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L549-574
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L549-574
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L353-357
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusManager.kt?ref_type=heads#L353-357

6. packBlockRange returns the packet is not full even when there are more
blocks to be added

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-6

Target: EBFT

Description
The packBlockRange function builds the blocks list for the GetBlockRange message and
returns true or false depending on whether the blocks fit in the packed list. The list has a
limit of 10 blocks (MAX_BLOCKS_IN_PACKAGE); however, if the number of blocks exceeds
the maximum, the function still returns true, which incorrectly signals that all blocks can fit
in the blocks list.

/**
* Packs blockchain blocks into the "blocks" list so that it does not go over

package size.
*
* @return true if all blocks we had could fit in the block
*/
fun packBlockRange(

peerId: NodeRid,
peerEbftVersion: Long,
startAtHeight: Long,
myHeight: Long,
getBlockFromHeight: (height: Long) -> BlockDataWithWitness?, // Sending

this to simplify testing
buildFromBlockDataWithWitness: (height: Long, blockData:

BlockDataWithWitness) -> CompleteBlock, // Sending this to simplify testing
packedBlocks: MutableList<CompleteBlock> // Holds the "return" list

): Boolean {
logger.debug { "GetBlockRange from peer $peerId, starting at height

$startAtHeight, myHeight is $myHeight" }
var totByteSize = 0
var blocksAdded = 0
while (blocksAdded < MAX_BLOCKS_IN_PACKAGE) {
...

}
return true

}

Figure 6.1: The packBlockRange() function
(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/

common/BlockPacker.kt#L25-68)

Trail of Bits 31 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/common/BlockPacker.kt?ref_type=heads#L25-68
https://gitlab.com/chromaway/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/common/BlockPacker.kt?ref_type=heads#L25-68

Since this information is not currently used, this issue is informational.

Recommendations
Short term, when exiting the while loop, the packBlockRange function should not always
return true, but instead should check if startAtHeight + MAX_BLOCKS_IN_PACKAGE is
equal to MyHeight; if it is equal, the packBlockRange function should return true, and if
it is not, the function should return false.

Long term, improve the testing suite to check all the possible paths that a function can take
at least once.

Trail of Bits 32 ChromaWay Security Assessment
PUBLIC

7. Liveness violation under asynchronous network conditions

Severity: High Difficulty: Low

Type: Timing Finding ID: TOB-CHROMAWAY-7

Target: EBFT

Description
ChromaWay’s EBFT is vulnerable to a liveness violation under specific asynchronous
network conditions, which ultimately leads to a victim node erroneously committing a block
that will be orphaned from the chain. Note that the following attack is not Byzantine; it may
occur under the normal semi-synchronous network conditions that are standard
assumptions for BFT algorithms.

Attack 1
Consider a network of four validator nodes of equal voting power, A, B, C, and D, where
there is a proposal for block X at round 1. Suppose that nodes B, C, and D all receive the
block from the proposer and change their state from WaitBlock to HaveBlock, but node
A does not receive the block due to network asynchrony.

Each node broadcasts its status updates, but only node D receives all of the status updates.
Nodes A, B, and C receive all of the status updates except node D’s update. Node D
observes that three out of four nodes are in HaveBlock, so it changes its state to
Prepared. This effectively commits the block for node D, as it generates and serves a
commit signature for the block.

Meanwhile, nodes A, B, and C cannot form a quorum of HaveBlock without D’s status
update, so they trigger a revolt and the revolt succeeds. Nodes A, B, and C now proceed in
round 2, proposing block Y, forming a quorum, and committing the block. Since node D
committed to block X, it cannot respect the revolt and continue participating in consensus.
If node D were to create a new commitment to block Y, it would be committing a safety
violation because it is committed to two different blocks at the same block height.

Attack 2
If we assume this safety violation is benign and allow D to commit to a different block at the
same height, a new attack against the system’s safety is created using a balancing attack.
Consider a different network of four validator nodes where node A has 1% of voting power,
and nodes B, C, and D each have 33% of voting power. Node A is malicious and wants to
cause a chain split. Block X in round 1 is proposed, all the nodes receive the block, and they
all transition to the HaveBlock state. However, node B’s HaveBlock status update is not

Trail of Bits 33 ChromaWay Security Assessment
PUBLIC

received by any nodes. Since nodes A, C, and D are all in HaveBlock, they still have enough
voting power to transition to Prepared. However, malicious node A withholds its transition
to the Prepared state, which causes nodes C and D to commit to block X, but they are
unable to form a consensus with only 66% of the network’s voting power. A revolt is
executed, moving to round 2 with a proposal for block Y. No other malicious action is taken,
and block Y is committed to by all nodes.

At this point, malicious node A may take the commit signatures it obtained from nodes C
and D in round 1, add its own signature, form a 67% quorum, and build a valid witness for
block X at the same height as block Y. This proves that simply allowing a validator to sign
pre-commits for two different blocks for the same block height causes a non-benign safety
violation that can be exploited by validators with arbitrary voting power.

Attack 3
It should be noted that if the malicious node is the block proposer for round 1, it can trigger
the above attack without any asynchronous network conditions. It does this by sharing the
block with only 66% of the network’s voting power, withholding its commit signature, and
then signing the block after the revolt passes.

Exploit Scenario
An attacker may use a doubly-signed block for a variety of nefarious purposes. The
highest-impact attack would be to attack a third-party exchange; the attacker would create
a deposit transaction and include it in block X (the block to be orphaned). When the
exchange’s nodes try to synchronize, the attacker ensures that they receive block X before
they can receive the canonical block Y, thus creating a double-spend.

Recommendations
Short term, the protocol’s gossip should be updated in such a way that validators can
gossip about the known states of other validators in the set. This can help prevent attack 3
by allowing nodes to obtain the proposed block from other validators, and can partially
prevent attack 2 by allowing honest nodes to gossip about other nodes’ HaveBlock
messages, preventing malicious nodes from withholding HaveBlock messages. However,
solving attack 1 and comprehensively solving attack 2 will require a more thorough,
multi-faceted mitigation.

Long term, ChromaWay should migrate its BFT to a three-step round, where a new
“pre-vote” phase preempts the pre-commit phase. This new phase provides a way for
validators to “lock” their pre-commit votes to a specific block, and to “unlock” their
pre-commit votes only when a consensus is formed. An explanation of the pre-vote phase
and vote locking/unlocking can be found in section 3.2.2 of Buchman (2016)[0] and Buchman
et. al (2018)[1]. A formal treatment of generic Byzantine fault-tolerant algorithms used to
research this finding may be found in Rütti et. al (2010)[2].

Trail of Bits 34 ChromaWay Security Assessment
PUBLIC

References
● [0] Tendermint: Byzantine Fault Tolerance in the Age of Blockchains
● [1] The latest gossip on BFT consensus
● [2] Generic construction of consensus algorithms for benign and Byzantine faults

Trail of Bits 35 ChromaWay Security Assessment
PUBLIC

https://knowen-production.s3.amazonaws.com/uploads/attachment/file/1814/Buchman_Ethan_201606_Msater%2Bthesis.pdf
https://arxiv.org/pdf/1807.04938
https://ieeexplore.ieee.org/document/5544299

8. Slowloris denial-of-service attack

Severity: Medium Difficulty: Low

Type: Denial of Service Finding ID: TOB-CHROMAWAY-8

Target: Networking code

Description
Postchain’s networking code is vulnerable to a Slowloris DoS attack by an unprivileged
network attacker. The attack would work as follows:

● The attacker opens a connection to a postchain node, claiming to be a trusted node
with a known public key and promising to send a 29-MB message. This is below the
30 MB limit.

● The attacker sends the first 20 MB of data. So far, this data cannot be verified, since
signature verification can only happen once the full 29 MB of data is received.

● The attacker then sends one byte of data every 30 seconds in order to keep the
connection alive and avoid triggering the idle timeout of 60 seconds.

● While keeping the first connection alive, the attacker creates many more
connections in the same way.

● Eventually, these connections will either consume all of the memory in the target
node, causing an out-of-memory crash, or reach a maximum connection count,
causing legitimate nodes to be unable to communicate with the target node.

This attack is possible due to two weaknesses in Postchain’s networking system:

● Signatures can only be verified once a full message has been delivered.

● There is no timeout for messages, aside from the idle timeout. This idle timeout still
allows messages to be sent extremely slowly.

Recommendations
Short term, enforce a message timeout. Messages that are not sent before the timeout
should be dropped.

Long term, send messages over mutual TLS (mTLS). This would require every TCP packet to
be signed, causing the Slowloris attack to be caught much earlier.

Trail of Bits 36 ChromaWay Security Assessment
PUBLIC

9. Incorrect check in require_blockchain function

Severity: Undetermined Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-CHROMAWAY-9

Target: directory-chain/src/common/require.rell

Description
The check shown in figure 9.1 is incorrect. This check is used in the require_blockchain
function to determine whether a blockchain is running or not, with an optional
require_running parameter. When require_running is set to true, the blockchain’s
state should only be allowed to be RUNNING, rather than PAUSED. However, a paused
blockchain will still pass this check, even when require_running is set to true. This is
because the expression (require_running and .state ==
blockchain_state.RUNNING) or .state in [blockchain_state.RUNNING,
blockchain_state.PAUSED] will simplify to (true and false) or true, which
further simplifies to true.

function require_blockchain(
blockchain_rid: byte_array,
require_running: boolean = false,
include_removed: boolean = false

) = require(
blockchain @? {

blockchain_rid,
include_removed or
(require_running and .state == blockchain_state.RUNNING) or
.state in [blockchain_state.RUNNING, blockchain_state.PAUSED]

}, "Unknown blockchain " + blockchain_rid
);

Figure 9.1: The require_blockchain function
(directory-chain/src/common/require.rell:25-36)

Recommendations
Short term, fix this check so that it correctly accounts for require_running. An example
of how to do this is shown in figure 9.2.

function require_blockchain(
blockchain_rid: byte_array,
require_running: boolean = false,

Trail of Bits 37 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/2f051d48021550e9e60fefbe055143e448828a82/src/common/require.rell#L25-L36

include_removed: boolean = false
) = require(

blockchain @? {
blockchain_rid,
include_removed or
(require_running and .state == blockchain_state.RUNNING) or
((not require_running) and .state in [blockchain_state.RUNNING,

blockchain_state.PAUSED])
}, "Unknown blockchain " + blockchain_rid

);

Figure 9.2: Proposed replacement for require_blockchain function

Trail of Bits 38 ChromaWay Security Assessment
PUBLIC

10. Missing after_provider_updated when updating a provider’s state

Severity: Undetermined Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-10

Target:
directory-chain/src/proposal_provider/proposal_provider_state.rell

Description
The propose_provider_state operation directly updates the state of a provider instead
of creating a proposal when its tier is DAPP_PROVIDER. However, the operation is missing a
call to the after_provider_updated function that would send a message to the
economy chain to notify the change.

operation propose_provider_state(my_pubkey: pubkey, provider_pubkey: pubkey, active:
boolean, description: text = "") {

val me = require_provider(my_pubkey);
require_provider_auth_with_rate_limit(me);

val other_prov = require_provider(provider_pubkey);

// Only SP and NP can enable/disable providers
require_node_access(me);

if (roles.has_node_access(me) and other_prov.tier ==
provider_tier.DAPP_PROVIDER) {

update_provider_state(other_prov, active);
} else {
...

Figure 10.1: Snippet of the propose_provider_state() operation
(directory-chain/src/proposal_provider/proposal_provider_state.rell#L33-4

4)

Recommendations
Short term, when updating the state of a provider with the DAPP_PROVIDER tier, add a call
to after_provider_updated(other_prov).

Trail of Bits 39 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/proposal_provider/proposal_provider_state.rell#L33-44
https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/proposal_provider/proposal_provider_state.rell#L33-44

11. Provider state proposals can create duplicate entities with the same keys

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-11

Target:
directory-chain/src/proposal_provider/{proposal_provider_state,propo
sal_provider_is_system}.rell

Description
In the directory chain’s proposal_provider module, there is no safeguard preventing a
proposal that activates an already-active provider. If this provider is a system provider, this
will result in the creation of a duplicate voter_set_member entity, which has the same key
as an existing voter_set_member entity (see figure 11.1).

This issue is rated as informational since the entity creation would result in a revert with a
confusing error message, rather than allowing for any attacks.

function update_provider_state(provider, active: boolean, proposal: proposal? =
null) {

provider.active = active;
if (active == false) {

// ...
} else { // enable

// If enabled provider is a system provider, update SYSTEM_P voter set
if (roles.has_system_access(provider)) {

create voter_set_member(voter_set @ { voter_sets.system_p }, provider);
}

}
}

Figure 11.1: Creation of voter_set_member entity. This entity will be a duplicate if the provider
was already active.

(directory-chain/src/proposal_provider/proposal_provider_state.rell:53-91
)

In addition, it is also possible to create and apply a proposal that gives system permissions
to an existing system provider. This would cause the enroll.system function to be called
on this provider, which would result in the creation of duplicate voter_set_member and
cluster_provider entities.

Trail of Bits 40 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/proposal_provider/proposal_provider_state.rell#L53-L91

Recommendations
Short term, when applying a pending_provider_state proposal, check that the
provider’s active property is the opposite of the proposal’s active property. When
applying a pending_provider_is_system proposal, check that the provider’s system
property is the opposite of the proposal’s system property.

Trail of Bits 41 ChromaWay Security Assessment
PUBLIC

12. Insufficient check allows for voter sets to be made unusable accidentally

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-CHROMAWAY-12

Target:
directory-chain/src/economy_chain/economy_chain_proposal_voter_set.r
ell

Description
The check highlighted in figure 12.1 is used to ensure that voter sets do not accidentally set
their threshold too high; this would render the voter set unusable, since it would be unable
to meet its threshold. However, the threshold can be changed while at the same time
removing members from the voter set. If this happened, the threshold could potentially be
set too high, since the check does not account for this case.

function _propose_update_ec_voter_set(my_pubkey: pubkey, voter_set_name: text,
new_threshold: integer?, new_member: list<pubkey>, remove_member: list<pubkey>) {

require_is_signer(my_pubkey);
val voter_set = require_common_voter_set(voter_set_name);
require(voter_set.name != voter_sets.system_p, "Cannot update system voter set.

Update this by proposing system provider role");
require_common_voter_set_governor(voter_set, my_pubkey);
require(empty(common_proposal @* { voter_set, common_proposal_state.PENDING }),

"Cannot have more than one pending proposal involving this voter set.");

val prop = create common_proposal(
op_context.last_block_time,
common_proposal_type.ec_voter_set_update,
my_pubkey,
voter_set,
"Update %s voter set".format(voter_sets.chromia_foundation)

);
val update_prop = create pending_ec_voter_set_update(prop, voter_set);
if (new_threshold != null) {

require(new_threshold >= -1 and new_threshold <= (common_voter_set_member @*
{ voter_set }).size(),

"Invalid threshold level, must be in range [-1, voter_set.size()]");
create ec_voter_set_update.threshold(update_prop, new_threshold);

}
for (m in new_member) {

create ec_voter_set_update.new_member(update_prop, m);
}
for (m in remove_member) {

create ec_voter_set_update.remove_member(update_prop, m);

Trail of Bits 42 ChromaWay Security Assessment
PUBLIC

}
internal_common_vote(my_pubkey, prop, true);

}

Figure 12.1: Check on voter set threshold
(directory-chain/src/economy_chain/economy_chain_proposal_voter_set.rell:

62-89)

Recommendations
Short term, modify this check so that it accounts for the remove_member and new_member
lists. The maximum threshold should be (common_voter_set_member @* { voter_set
}).size() + new_member.size() - remove_member.size().

Trail of Bits 43 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/economy_chain/economy_chain_proposal_voter_set.rell#L62-L89
https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/economy_chain/economy_chain_proposal_voter_set.rell#L62-L89

13. Potential out-of-bounds array index due to insufficient require statement

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-CHROMAWAY-13

Target: directory-chain/src/lib/iccf/module.rell

Description
The extract_operation_arg function, used for the Inter-Chain Confirmation Facility,
contains a require statement meant to prevent out-of-bounds array access (see figure
13.1). However, the require statement does not trigger if an index to
args[args.size()] is attempted. This can lead to an out-of-bounds array indexing.

This issue is rated as informational because this out-of-bounds array indexing would trigger
a revert anyway, but with a more confusing error message.

function extract_operation_arg(
gtx_transaction,
op_name: text,
arg: integer = 0,
verify_signers: boolean = true,
require_anchored_proof: boolean = false

): gtv {
val args = extract_operation_args(gtx_transaction, op_name, verify_signers,

require_anchored_proof);
require(

args.size() >= arg,
"Argument number %d not found on operation %s. %d arguments found"

.format(arg, op_name, args.size())
);
return args[arg];

}

Figure 13.1: Insufficient require statement
(directory-chain/src/lib/iccf/module.rell:23-37)

Recommendations
Short term, change the greater-than-or-equals operator shown in figure 13.1 to a
greater-than operator. This will cause the require statement to trigger if args.size()
equals arg.

Trail of Bits 44 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/7893b6ac27b66a54330851f875e9179b09f2259d/src/lib/iccf/module.rell#L23-L37

14. Incorrect staking_requirement_dapp_provider_total_stake_usd default
value

Severity: Low Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-14

Target: directory-chain/src/economy_chain/economy_chain_model.rell

Description
The staking_requirement_dapp_provider_total_stake_usd default value is set to
10k instead of 100k. As a result, a dapp provider could stake a much lower amount than
the requirement to receive the rewards.

mutable staking_requirement_dapp_provider_total_stake_usd: integer = 10000; // 100k
usd

Figure 14.1: The staking_requirement_dapp_provider_total_stake_usd() default
value (directory-chain/src/economy_chain/economy_chain_model.rell#L35)

Exploit Scenario
Alice, a dapp provider, stakes a total of 10k USD instead of 100k while still receiving
rewards.

Recommendations
Short term, correct the staking_requirement_dapp_provider_total_stake_usd
default value to 100_000.

Long term, improve the testing suite with tests for the default staking values with at least
one positive and one negative test.

Trail of Bits 45 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_model.rell?#L35

15. Incorrect conversion of CHR to USD

Severity: High Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-15

Target: directory-chain/src/economy_chain/economy_chain_reward.rell

Description
The get_chr_in_usd function is used when computing the user’s amount of CHR in USD
to decide if the staking requirements are satisfied; however, the function multiplies the
CHR in input for the chr_per_usd value instead of dividing it.

function get_chr_in_usd(chr: integer): decimal =
chr * economy_constants.chr_per_usd;

Figure 15.1: The get_chr_in_usd() function
(directory-chain/src/economy_chain/economy_chain_reward.rell#L281-282)

chr_per_usd represents how many CHR one can get for 1 USD, so multiplying for it is
incorrect. For example, if we have 100 CHR and the chr_per_usd is 5, the correct result
would be 100 / 5 = 20 instead of 100 * 5 = 500.

Exploit Scenario
Assuming the chr_per_usd is set to 5, every user can stake 25 times less CHR than
required while receiving rewards.

Recommendations
Short term, make the get_chr_in_usd function divide the CHR by the chr_per_usd
value.

Long term, improve the testing suite to validate the appropriate amount of CHR that users
are required to stake. Additionally, consider validating the staking requirements using the
CHR amount directly instead of the amount converted in USD (see TOB-CHROMAWAY-21).

Trail of Bits 46 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_reward.rell?#L281-282

16. Action points can be stolen

Severity: High Difficulty: Low

Type: Data Validation Finding ID: TOB-CHROMAWAY-16

Target:
directory-chain/src/common/operations/common_operations_provider.rel
l

Description
The transfer_action_points function does not validate that the amount passed is not
negative; as a consequence, by passing a negative value, it is possible to steal action points
from the to address.

operation transfer_action_points(from: pubkey, to: pubkey, amount: integer) {
val _from = require_is_provider_with_rate_limit(from);
val _to = require_provider(to);
require(provider_rl_state @ { _from } .points >= amount, "Not enough action points to

transfer from.");
update provider_rl_state @ { _from } (.points -= amount);
update provider_rl_state @ { _to } (.points += amount);

}

Figure 16.1: The transfer_action_points() function
(directory-chain/src/common/operations/common_operations_provider.rell#L4

2-48)

The system uses action points to limit the actions each provider can execute through the
require_provider_auth_with_rate_limit and
require_is_provider_with_rate_limit functions. A non-exhaustive list of actions
that are limited by action points includes: register a new provider, update a new provider,
add and remove a blockchain replica, propose a new container, propose new cluster limits,
and propose a provider to be a system.

A malicious provider could cause a DoS by executing many actions in quick succession or
remove all action points from other providers.

Exploit Scenario
Eve, a provider, exploits this vulnerability to get a lot of points and execute many actions,
causing a DoS to the system.

Recommendations
Short term, validate that amount is greater than 0.

Trail of Bits 47 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/common/operations/common_operations_provider.rell?ref_type=heads#L42-48
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/common/operations/common_operations_provider.rell?ref_type=heads#L42-48

Long term, improve the unit testing of functions that take a signed integer with tests for
both positive and negative integers and verify they have the expected behavior.

Trail of Bits 48 ChromaWay Security Assessment
PUBLIC

17. Incorrect logic in propose_minting allows for one vote to be forged

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-CHROMAWAY-17

Target: directory-chain/src/economy_chain/economy_chain_mint.rell

Description
The propose_minting operation, shown in figure 17.1, is used to create a proposal to
mint CHR tokens. It creates an initial “yes” vote for the user-provided proposal_by value.
However, it does not verify that this value is one of the signers of the transaction that called
the operation. This means that one extra “yes” vote can be maliciously gained in favor of a
minting proposal.

operation propose_minting(proposal_by: byte_array, amount: integer, account_id: byte_array)
{

val mint_chr_voter_set = require_mint_chr_voter_set();
require_signer_member_of_voter_set(mint_chr_voter_set);
require(amount > 0, "Amount must be greater than 0");
ft4.accounts.Account(account_id);

val proposal = create common_proposal(
op_context.last_block_time,
common_proposal_type.ec_mint,
proposal_by,
mint_chr_voter_set,
"Minting %d assets to account id %s".format(amount, account_id));

create pending_minting(
proposal,
amount,
account_id

);

internal_common_vote(proposal.proposed_by, proposal, true);
}

Figure 17.1: propose_minting operation
(directory-chain/src/economy_chain/economy_chain_mint.rell:43-64)

Exploit Scenario
A group of nine voters wants to mint tokens. However, a threshold of 10 voters is required
for the vote to pass. One of the voters calls the propose_minting function, and provides
someone else’s public key as the proposal_by argument. The nine voters then vote “yes”
on this proposal, and it passes.

Trail of Bits 49 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_mint.rell#L43-L64

Recommendations
Short term, add a statement to the propose_minting operation requiring that
proposal_by was a signer of the transaction.

Long term, create a standard convention for how to authenticate operations, and create
automated tests that ensure that this convention is always followed. For example, this
convention may be: “The first argument to the operation must be named my_pubkey, and
the operation must always contain the statement require_is_signer(my_pubkey).”
This convention can be checked by simple text parsing or syntax tree inspection, without
need for advanced static analysis tooling.

Trail of Bits 50 ChromaWay Security Assessment
PUBLIC

18. Users are forced to pay for the container expired time when renewing it

Severity: Medium Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-18

Target: directory-chain/src/economy_chain/economy_chain_container.rell

Description
When a user renews a container’s lease with the renew_container_lease function, the
user must also repay for the time when the container expired and stopped as if it was
actually running during that time.

function renew_container_lease(ft4.accounts.account, lease, duration_weeks: integer) {
val tag = lease.cluster.tag;
val cost = calculate_container_cost(duration_weeks, lease.container_units,

lease.extra_storage_gib, tag);
ft4.assets.Unsafe.transfer(account, get_pool_account(), get_asset(), cost);
lease.duration_millis += duration_weeks * millis_per_week;

}

Figure 18.1: The renew_container_lease() function
(directory-chain/src/economy_chain/economy_chain_container.rell#L264-269)

A container has a lease associated with a start_time and duration_millis fields. A
container is considered expired if the current time is greater than start_time +
duration_millis; if it is expired, it will be stopped. Given that the start_time is not
updated in the renew_container_lease function, the user is effectively paying for the
time when the container expired and stopped.

Exploit Scenario
Alice makes her container’s lease expire, but after three weeks she wants to renew the
lease. She renews it for four weeks; however, after one week, it unexpectedly expires again.

Recommendations
Short term, update the lease start_time in renew_container_lease when the lease is
expired.

Long term, improve the documentation and testing suite for this specific scenario to clarify
and check for the expected behavior, respectively.

Trail of Bits 51 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_container.rell?ref_type=heads#L264-269

19. Time-of-check/time-of-use issues for proposals

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-CHROMAWAY-19

Target: Directory chain, various locations

Description
In the directory chain codebase, many properties are checked at the time that proposals
are created, but not at the time that they are applied. These properties may become false
while the proposal is being voted on, leading to problems when applying the proposal.
Instead, properties should be checked both when creating and when applying proposals.

This issue details various locations where time-of-check/time-of-use discrepancies may
cause problems when applying proposals.

Cluster CPU and storage capabilities are checked when creating cluster limit proposals,
rather than when applying them. This can cause clusters to have limits that are lower than
their current usage.

Quotas are checked when creating container proposals, rather than when applying them.
This means that someone with a quota of 10 containers can propose 100 containers, and
then these proposals can be applied later on in quick succession, circumventing the quota.

Two proposal handlers in the proposal_blockchain_import directory check that a
blockchain is in an IMPORTING state when a proposal is suggested, but not when it is
applied. In particular, this happens for the configuration_import and
foreign_blockchain_blocks_import proposals. The blockchain could finish importing
in the meantime, leading to various unexpected actions being applied on running
blockchains.

When a proposal to remove a blockchain is suggested, there is a check to ensure that no
other blockchains depend on it. This check is not performed again when applying the
proposal. However, this will only result in the proposal failing to be applied, because the
Rell interpreter’s constraint checker would detect a blockchain_dependency entity with a
dangling pointer to the deleted blockchain.

Recommendations
Short term, remediate the individual issues described above by adding relevant checks to
proposal-applying functions.

Trail of Bits 52 ChromaWay Security Assessment
PUBLIC

Long term, for each proposal, create a function that checks all of the properties that must
hold for the proposal to be applied, and add calls to this function in the code for creating
and for applying the proposal.

Trail of Bits 53 ChromaWay Security Assessment
PUBLIC

20. Users can avoid paying the upgraded container cost for a certain duration

Severity: Medium Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-20

Target: directory-chain/src/economy_chain/economy_chain_container.rell

Description
Users can upgrade the resources a container uses while still paying the cost of the old,
non-upgraded container.

When a container is upgraded, the cost paid by the user first considers the new resources
used, as shown in figure 20.1, after which a ticket is created and sent as a message.

function upgrade_container_impl(
container_name: text,
upgraded_container_units: integer,
upgraded_extra_storage_gib: integer,
upgraded_cluster_name: text

) {
...
val cost = calculate_container_cost(lease.duration_millis / millis_per_week,

upgraded_container_units, upgraded_extra_storage_gib, cluster.tag)
- if (lease.expired) 0 else calculate_remaining_lease_value(lease,

op_context.last_block_time);
ft4.assets.Unsafe.transfer(account, get_pool_account(), get_asset(), cost);

val ticket = create ticket(type = ticket_type.UPGRADE_CONTAINER, account);
create upgrade_container_ticket(ticket,

container_name = container_name,
container_units = upgraded_container_units,
extra_storage_gib = upgraded_extra_storage_gib,
cost = cost,
cluster_name = cluster.name

);
send_message(upgrade_container_topic, upgrade_container_message(

ticket_id = ticket.rowid.to_integer(),
container_name = container_name,
container_units = upgraded_container_units,
extra_storage = 1024 * upgraded_extra_storage_gib,
cluster_name = upgraded_cluster_name

).to_gtv());
}

Figure 20.1: The handleWaitBlockState() function
(core/directory-chain/src/economy_chain/economy_chain_container.rell#L117

-159)

Trail of Bits 54 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_container.rell#L117-159
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_container.rell#L117-159

The message is then handled by the receive_ticket_container_result_message
function (figure 20.2). If successful, it creates a new lease. The problem is that the
duration_millis used in that new lease is taken directly from the current lease, which
can be increased by renewing the lease while still paying for the old resources used. This
means that users can effectively increase the lease duration with the new resources while
paying for the old (smaller) resources.

function receive_ticket_container_result_message(body: gtv) {
val message = ticket_container_result_message.from_gtv(body);
val ticket = ticket @? { .rowid == rowid(message.ticket_id) };
if (ticket == null) {

log("ticket_id %s not found".format(message.ticket_id));
return;

}
ticket.state = if (message.error_message == null) ticket_state.SUCCESS else

ticket_state.FAILURE;
ticket.error_message = message.error_message ?: "";

when (ticket.type) {
ticket_type.CREATE_CONTAINER -> {

...
}
ticket_type.UPGRADE_CONTAINER -> {

val specific_ticket = upgrade_container_ticket @ { ticket };
val cluster = cluster @ { .name == specific_ticket.cluster_name };
when (ticket.state) {

ticket_state.SUCCESS -> {
// Note: When we implement "move" the container name might change so we

should check what name D1 returns
val upgraded_container_name = message.container_name!!;
val upgraded_cluster_name = message.cluster_name!!;
log("Successfully upgraded container %s for ticket

%s".format(upgraded_container_name, message.ticket_id));
val current_lease = lease @ { .container_name ==

specific_ticket.container_name };
val currently_auto_renewed = current_lease.auto_renew;
val current_duration = current_lease.duration_millis;
val bridge_leases = delete_bridge_leases(current_lease);
delete current_lease;
val new_lease = create lease(

container_name = upgraded_container_name,
account = ticket.account,
container_units = specific_ticket.container_units,
extra_storage_gib = specific_ticket.extra_storage_gib,
cluster = cluster,
start_time = op_context.last_block_time,
duration_millis = current_duration,
auto_renew = currently_auto_renewed

);
transfer_bridge_leases_to_lease(new_lease, bridge_leases);

}
ticket_state.FAILURE -> {

...
}

}
}

}

Trail of Bits 55 ChromaWay Security Assessment
PUBLIC

}

Figure 20.2: The recomputeStatus() function
(core/directory-chain/src/economy_chain/economy_chain_ticket.rell#L6-78)

Exploit Scenario
Eve has a container with 15 container_units and 10 extra_storage_gib. She calls the
upgrade_container operation with 50 container_units and 40 extra_storage_gib. She
then immediately calls the renew_container operation to extend the lease duration by 12
weeks and pays the cost for the old resources (15 container_units and 10
extra_storage_gib). The ticket message is then handled and she gets a new lease with
50 container_units and 40 extra_storage_gib with a duration extended by 12 weeks.

Recommendations
Short term, make the renew_container operation not callable when a container upgrade
is ongoing.

Long term, analyze all possible operations that can be called and that could affect expected
behavior when a message is sent and they are called before it is handled.

Trail of Bits 56 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_ticket.rell#L6-78

21. Required staking amounts are in USD rather than CHR

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-21

Target: Directory chain

Description
The minimum amount of money that must be held by stakers is specified in US dollars,
rather than in CHR tokens. However, stakers hold their value in CHR. This means that a
decrease in the price of CHR can make existing stakers ineligible. In addition, specifying the
staking amount in USD gives the price oracle an undue amount of influence over the
staking system.

This issue is rated as informational, since staking eligibility currently affects only who
receives awards.

Recommendations
Short term, specify staking amounts in CHR, rather than USD. Doing so would also solve
TOB-CHROMAWAY-15, since the get_chr_in_usd function would no longer be needed.

Trail of Bits 57 ChromaWay Security Assessment
PUBLIC

22. Division by zero when calculating rewards

Severity: Informational Difficulty: Medium

Type: Undefined Behavior Finding ID: TOB-CHROMAWAY-22

Target: directory-chain/src/economy_chain/economy_chain_reward.rell

Description
The following calculations, performed while determining reward payouts for dapp clusters,
may perform divisions by zero. A cluster with malicious owners can force these divisions by
zero to happen by adjusting the number of available nodes and container units in the
cluster.

val max_dapp_provider_reward_per_node = ((dapp_cluster_value * (1 -
economy_constants.dapp_provider_risk_share) + dapp_cluster_value * occupancy_rate *
economy_constants.dapp_provider_risk_share) / number_of_nodes_per_dapp_cluster) *
economy_constants.chr_per_usd * units_per_asset;

function occupancy_rate(cluster): decimal = decimal(occupied_scus(cluster)) /
(total_available_scus(cluster.cluster_units) -
standard_cluster_unit.system_container_units);

Figure 22.1: Calculations that can result in division by zero
(directory-chain/src/economy_chain/economy_chain_reward.rell:70,204)

This division by zero will result in a revert, and will prevent the cluster from receiving
rewards. However, the revert will not interfere with rewards given to other clusters, so this
issue is rated as informational.

Recommendations
Short term, add a check before these calculations that causes the calculations to exit
without reverting if they will result in a division by zero.

Trail of Bits 58 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_reward.rell

23. Blockchain move proposals only need permission from destination, not
source

Severity: High Difficulty: High

Type: Access Controls Finding ID: TOB-CHROMAWAY-23

Target:
directory-chain/src/proposal_blockchain_move/proposal_blockchain_mov
e.rell

Description
Blockchain move proposals are voted on by the destination container, and not by the
source container. Only one member of the source container’s voter set is needed to create
this proposal. This means that a member of a container’s voter set can take over a
blockchain by moving it to a malicious container. A TODO comment in the code mentions
this problem.

operation propose_blockchain_move(my_pubkey: pubkey, blockchain_rid: byte_array,
destination_container: text, description: text = "") {

// ...
val src_container = container_blockchain @ { blockchain } .container;
require_container_deployer(src_container, me);
// ...
val prop = create_proposal(proposal_type.blockchain_move_start, me,

dst_container.deployer, description); // TODO: POS-961: src + dst?
create pending_blockchain_move(prop, blockchain, dst_container);
internal_vote(me, prop, true);

}

Figure 23.1: The propose_blockchain_move() function. The first highlighted piece of code
requires a single member of the source container’s voter set to create the proposal.

(directory-chain/src/proposal_blockchain_move/proposal_blockchain_move.re
ll:7-37)

Exploit Scenario
One of the members of a container’s voter set goes rogue and creates a blockchain move
proposal to transfer the blockchain to a container entirely under his control. The other
members of the source container’s voter set are unable to stop him.

Recommendations
Short term, change the blockchain move proposal code so that it creates two proposals
that must happen in succession: one that must be approved by the source of the move,
and one that must be approved by the destination.

Trail of Bits 59 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/proposal_blockchain_move/proposal_blockchain_move.rell#L7-L37
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/proposal_blockchain_move/proposal_blockchain_move.rell#L7-L37

24. Missing input validation on setter functions

Severity: Medium Difficulty: High

Type: Data Validation Finding ID: TOB-CHROMAWAY-24

Target:
directory-chain/src/economy_chain/economy_chain_operations.rell

Description
The operations update_economy_constant and
update_system_provider_economy_constants update certain system variables that
represent a percentage, such as staking_reward_fee_share and
system_provider_fee_share. However, the system does not validate that the new value
is between 0 and 1, with the latter being 100%.

For the update_economy_constants operation (figure 24.1), the following arguments are
missing validations: staking_reward_fee_share, chromia_foundation_fee_share,
resource_pool_margin_fee_share, and dapp_provider_risk_share.

operation update_economy_constants(
min_lease_time_weeks: integer?,
max_lease_time_weeks: integer?,
staking_reward_fee_share: decimal?,
chromia_foundation_fee_share: decimal?,
resource_pool_margin_fee_share: decimal?,
dapp_provider_risk_share: decimal?

) {
val provider = require_system_provider_signer_entity();

val proposal = create_system_p_proposal(common_proposal_type.ec_constants_update,
provider, "Update economy constants");

create pending_economy_constants(
proposal,
min_lease_time_weeks = get_integer_or_default(min_lease_time_weeks, -1)!!,
max_lease_time_weeks = get_integer_or_default(max_lease_time_weeks, -1)!!,
staking_reward_fee_share = get_decimal_or_default(staking_reward_fee_share, -1)!!,
chromia_foundation_fee_share = get_decimal_or_default(chromia_foundation_fee_share,

-1)!!,
resource_pool_margin_fee_share =

get_decimal_or_default(resource_pool_margin_fee_share, -1)!!,
dapp_provider_risk_share = get_decimal_or_default(dapp_provider_risk_share, -1)!!

);

internal_common_vote(provider.pubkey, proposal, true);
}

Trail of Bits 60 ChromaWay Security Assessment
PUBLIC

Figure 24.1: The update_economy_constants() operation
(core/directory-chain/src/economy_chain/economy_chain_operations.rell?#L6

6-88)

For the update_system_provider_economy_constants operation (figure 24.2), the
following arguments are missing validations: system_provider_fee_share, and
system_provider_risk_share.

operation update_system_provider_economy_constants(
total_cost_system_providers: integer? = null,
system_provider_fee_share: decimal? = null,
system_provider_risk_share: decimal? = null

) {
require_admin();
economy_constants.total_cost_system_providers = total_cost_system_providers ?:

economy_constants.total_cost_system_providers;
economy_constants.system_provider_fee_share = system_provider_fee_share ?:

economy_constants.system_provider_fee_share;
economy_constants.system_provider_risk_share = system_provider_risk_share ?:

economy_constants.system_provider_risk_share;
}

Figure 24.2: The update_system_provider_economy_constants() operation
(core/directory-chain/src/economy_chain/economy_chain_operations.rell?#L3

1-40)

Possible issues can arise when one of those variables are set to greater than 1, such as an
underflow when computing the dapp_provider_fee_share. Additionally, an underflow
can happen even if the sum of the three subtracted values is greater than 1.

function dapp_provider_fee_share(): decimal = 1 -
economy_constants.chromia_foundation_fee_share -
economy_constants.resource_pool_margin_fee_share -
economy_constants.system_provider_fee_share;

Figure 24.3: The dapp_provider_fee_share() function
(core/directory-chain/src/economy_chain/economy_chain_reward.rell#L196)

Exploit Scenario
Alice, the protocol admin, incorrectly updates the system_provider_fee_share to a
value greater than 1. The dapp_provider_fee_share function underflows and returns a
large value, which compromises the system’s intended behavior.

Recommendations
Short term, validate in the update_economy_constant and
update_system_provider_economy_constants operations that the new values are not
greater than 1 and, where necessary, that their sum is also not greater than 1. For example,
the sum of chromia_foundation_fee_share, resource_pool_margin_fee_share
and system_provider_fee_share should not be greater than 1.

Trail of Bits 61 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_operations.rell?ref_type=heads#L66-88
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_operations.rell?ref_type=heads#L66-88
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_operations.rell?ref_type=heads#L31-40
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_operations.rell?ref_type=heads#L31-40
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_reward.rell?ref_type=heads#L196

Long term, improve the system test suite by checking that the setter functions respect the
specifications and do not allow setting the corresponding variable to an invalid value.

Trail of Bits 62 ChromaWay Security Assessment
PUBLIC

25. Dapp providers can circumvent rate limits by creating more dapp
providers

Severity: High Difficulty: Medium

Type: Denial of Service Finding ID: TOB-CHROMAWAY-25

Target: Directory chain

Description
Dapp providers are rate limited to prevent DoS attacks. However, they can circumvent
these rate limits by creating more dapp providers. Each dapp provider has an independent
rate limit, so by creating more dapp providers, an attacker will be allowed to perform more
actions during the same amount of time.

It is worth noting that node providers or system providers can delete these newly created
dapp providers, although this would be difficult to do if the attacker creates an extremely
large number of providers.

Exploit Scenario
An attacker has a single dapp provider and wishes to perform one million operations per
day, but his dapp provider has a rate limit of 1,000 actions per day. He uses his dapp
provider to create 1,000 more dapp providers. Each of these 1,000 providers can perform
1,000 actions per day, so the attacker can now perform one million actions per day.

The attacker also continuously creates more dapp providers to make it more difficult for a
node or system provider to delete them all.

Recommendations
Short term, create a separate rate limit for dapp provider creation that is tied to a lease,
rather than to a specific dapp provider. Alternately, create a veto period when dapp
providers are created; during this veto period, prevent the newly created provider from
taking any actions, and allow node and system providers to delete the newly created dapp
provider if they deem it to be malicious.

Trail of Bits 63 ChromaWay Security Assessment
PUBLIC

26. Rate limits may be insufficient to prevent Rell denial-of-service attacks

Severity: Undetermined Difficulty: N/A

Type: Denial of Service Finding ID: TOB-CHROMAWAY-26

Target: Rell

Description
ChromaWay does not use a traditional gas-based metering system to prevent DoS attacks,
and instead uses a role-bound rate-limiting system. We believe that over the long term, this
rate-limiting system will cause existential risks to the stability of ChromaWay, preventing
ChromaWay dapps from being able to operate without using KYC (know-your-customer)
restrictions.

Blockchains with arbitrary code execution capabilities always require a way to determine if
and when a program will halt. Without this capability, it is impossible to construct a block
containing transactions that will terminate before the block proposal deadline.
Traditionally, this problem is solved by using either languages that are not Turing-complete
(Bitcoin Script), or a runtime environment that can be metered and constrained using gas
limits (Ethereum Virtual Machine, or EVM). These two solutions allow the following
properties:

1. The execution time of a transaction can be estimated without running the program
itself.

2. Transaction execution costs remain accurate even when the blockchain is highly
utilized.

3. Block proposers are protected against Sybil attacks by the presence and willingness
of a transaction to spend its balance to pay for fees according to its execution time.

ChromaWay’s solution to this problem is the points system: accounts are allocated a
certain amount of points that refresh periodically, and dapp developers estimate how
many points a specific operation should cost based on its complexity. We believe that this
system only superficially solves the blockchain-halting problem, and does not exhibit any of
the three properties outlined above, for the following reasons.

1. The execution time of a Rell transaction has to be estimated ahead of time by dapp
developers, likely through benchmarking. However, if the parameters of a function
affect its execution time, the benchmarking process must consider only the worst
case when determining how many points a transaction should cost. The worst-case

Trail of Bits 64 ChromaWay Security Assessment
PUBLIC

execution time likely takes many orders of magnitude more time to execute than
the average case, drastically reducing the throughput of the blockchain. If the
average transaction cost is used instead of the worst case, an attacker may launch a
DoS attack against the chain by creating worst-case transactions.

2. Since the point-cost of a Rell operation is static, there is no way to account for the
increase in execution time when there are more rows in the database to scan. This
means that dapp developers may have to periodically update their dapp’s point
costs based on the dapp’s utilization.

3. Since points and rate limits are refreshed periodically, an attacker’s potential attack
throughput is limited only by the number of accounts they are able to create. A
theoretical attacker may leverage this to fill every block with transactions up to their
limit, preventing users from using the dapp. Without a monetary cost associated
with points, dapp developers would have to implement some other kind of anti-sybil
mechanism, such as KYC.

Other kinds of anti-sybil mechanisms, such as IP-detection, browser fingerprinting,
Captcha, email verification, and SMS verification, are unlikely to offer meaningful
protection, as malicious entities can bypass these measures at a trivial cost.

Since this finding is technically out of scope for this engagement, its severity is rated as
undetermined.

Recommendations
Short term, ensure that point estimates are generated using a benchmarking of the worst
case scenario for each operation. In addition, ensure that the point limit for each block
ensures that the block execution time consumes only a fraction of the consensus’s round
time—preferably one tenth of the round time. For a blockchain that produces one block
every ten seconds, this means that block execution should never take longer than one
second in the average case.

Long term, introduce a method through which Rell transactions may be metered and paid
for using a fee token with monetary value. The metering of Rell code does not present a
challenge in itself since it is run in an interpreter; it is the metering of Postgres queries that
is a problem to estimate. Several options for metering Postgres resource consumption are
outlined below:

1. Use Postgres query plans to estimate the time complexity of a given SQL query,
along with the number of rows that must be scanned in the worst case.

This is how many cloud providers handle billing for their hosted database products.
Google’s BigQuery bills based on the amount of data scanned to execute a query,

Trail of Bits 65 ChromaWay Security Assessment
PUBLIC

https://www.postgresql.org/docs/current/using-explain.html
https://cloud.google.com/bigquery/pricing#analysis_pricing_models

charging a static amount per terabyte of I/O consumed by the query.

2. Compile Postgres and the Rell interpreter into Arbitrum Stylus, and use its
ink-metering system to determine transaction cost. Stylus is a blockchain-based
interpreter for WASM programs. While Stylus is intended to be used for Arbitrum’s
optimistic rollup offering, there is no reason it cannot be forked for ChromaWay’s
needs. It should be noted that at this time, Arbitrum Stylus is a very early-stage
project, and if pursuing this option, ChromaWay may have to make substantial
changes to Stylus to allow Postgres to run within it.

3. Remove Postgres as a dependency and implement the Rell SQL API as a custom,
levelDB-based database. This should be considered an option of last resort.
Implementing even a feature-constrained database is no small feat, but doing so
would allow the execution of arbitrary queries to be metered accurately.

Trail of Bits 66 ChromaWay Security Assessment
PUBLIC

https://docs.arbitrum.io/stylus/stylus-gentle-introduction

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 67 ChromaWay Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 68 ChromaWay Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Trail of Bits 69 ChromaWay Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 70 ChromaWay Security Assessment
PUBLIC

C. Code Quality Issues

This appendix contains issues that do not have immediate or obvious security implications.
However, they may facilitate exploit chains targeting other vulnerabilities or may become
easily exploitable in future releases.

● Unused provider_null variable in get_null_provider_account function
(see figure C.1). This variable should be used or removed.

function get_null_provider_account() {
// Relies on code that runs at initialisation
val ft4_null = ft4.accounts.account @ { NULL_ACCOUNT_ID };
val provider_null = provider @ {.pubkey == NULL_ACCOUNT_ID};
return provider_account @ { .account == ft4_null };

}

Figure C.1: get_null_provider_account() function
(directory-chain/src/economy_chain/economy_chain_staking_helpers.rell:14-

19)

● Overcomplicated database query in cm_get_cluster_info query (see figure
C.2). In particular, the cluster.name == name expression will always evaluate to
true. This query can be simplified to cluster_node @* { cluster } (…).

query cm_get_cluster_info(name): cm_cluster_info {
val cluster = require_cluster(name);
val cac = require(cluster_anchoring_chain @? { cluster }, "Cluster anchoring chain not

found for cluster " + name);
val cluster_peer = cluster_node @* {

cluster_node.cluster == cluster,
cluster.name == name

} (
peer = .node.pubkey,
peer_api_url = .node.api_url

);

Figure C.2: Snippet of cm_get_cluster_info() query; overcomplicated database query is
highlighted (directory-chain/src/src/cm_api/module.rell:21-30)

● Unused EBFT message topics. SIG(3) and BLOCKDATA(5).

● Important TODOs.

private fun handleTransaction(message: Transaction) {
// TODO: reject if queue is full
CompletableFuture.runAsync {

withLoggingContext(loggingContext) {
val tx =

blockchainConfiguration.getTransactionFactory().decodeTransaction(message.data)
workerContext.engine.getTransactionQueue().enqueue(tx)

Trail of Bits 71 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_staking_helpers.rell#L14-L19
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/economy_chain/economy_chain_staking_helpers.rell#L14-L19
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/cm_api/module.rell#L21-L30
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/message/MessageTopic.kt#L9
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/message/MessageTopic.kt#L11

}
}

}

Figure C.3: Snippet of handleTransaction() function
(core/postchain/postchain-base/src/main/kotlin/net/postchain/ebft/syncman

ager/validator/ValidatorSyncManager.kt#L273-281)

● Conditions are executed unnecessarily. The if conditions should be swapped so
the first one is executed only if needed.

if (this.maybeLegacy != isLegacy) {
if (logger.isDebugEnabled) {

logger.debug("Setting new fast sync peer status maybeLegacy: $isLegacy")
}

}

Figure C.4: Snippet of maybeLegacy() function
(core/postchain/postchain-base/src/main/kotlin/net/postchain/ebft/syncman

ager/common/KnownState.kt#L156-160)

● Incorrect comments.
● “@return true if all blocks we had could fit in the block” should be “@return

true if all blocks we had could fit in the packet”.

● “Unsuccessful response to [MsQueryRequest] or [MsBlockAtHeightRequest].”
should be “Unsuccessful response to [MsQueryRequest],
[MsBlockAtHeightRequest] or [MsBlocksFromHeightResponse].”

● MAX_QUEUED_PACKETS constant is unused.

● Statements try to check the same thing but use different cardinalities.

require(voter_set_member @? { proposal.voter_set, provider }, provider.pubkey + " must be a
member of the voter set");

Figure C.5: Snippet of internal_vote() function
(core/directory-chain/src/proposal/voting/apply.rell#L3)

require(exists(voter_set_member @* { voter_set, provider}), "Provider is not a member of
voter set " + voter_set.name);

Figure C.6: Snippet of require_voter_set_member() function
(core/directory-chain/src/common/require.rell?#L61-63)

● after_replica_node_removed_from_cluster function is called before
removing the node. Swap the statements.

Trail of Bits 72 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/validator/ValidatorSyncManager.kt?ref_type=heads#L273-281
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/validator/ValidatorSyncManager.kt?ref_type=heads#L273-281
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/common/KnownState.kt?ref_type=heads#L156-160
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/common/KnownState.kt?ref_type=heads#L156-160
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/ebft/syncmanager/common/BlockPacker.kt?ref_type=heads#L23
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/network/mastersub/protocol/MsMessage.kt?ref_type=heads#L303
https://gitlab.com/chromaway/core/postchain/-/blob/ToB-Audit/postchain-base/src/main/kotlin/net/postchain/network/conn.kt?ref_type=heads#L7
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/proposal/voting/apply.rell?ref_type=heads#L3
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/common/require.rell?ref_type=heads#L61-63

function _remove_replica_node_from_cluster_internal(cluster, node) {
val crn = cluster_replica_node @? { cluster, node };
if (exists(crn)) {

after_replica_node_removed_from_cluster(node, cluster);
delete crn;

}
}

Figure C.7: _remove_replica_node_from_cluster_internal() function
(core/directory-chain/src/common/cluster.rell#L96-102)

● Call to try_apply_proposal function in retract_vote not needed. The
proposal result cannot change when retracting a vote, but only when making a vote.

● Unused variable. The vs local variable is never used.

function remove_container_and_voter_set(container) {
if (empty(is_container_available_for_removal(container))) {

val vs = container.deployer;
remove_container_impl(container);

}
}

Figure C.8: remove_container_and_voter_set() function
(core/directory-chain/src/common/container.rell#L62-67)

Trail of Bits 73 ChromaWay Security Assessment
PUBLIC

https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/common/cluster.rell?ref_type=heads#L96-102
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/proposal/voting/module.rell?ref_type=heads#L58
https://gitlab.com/chromaway/core/directory-chain/-/blob/ToB-Audit/src/common/container.rell?ref_type=heads#L62-67

D. Testing Guidance and Recommendations

This appendix provides general recommendations on improving processes and enhancing
the quality of the ChromaWay’s Kotlin test suite.

Identified Testing Deficiencies
We identified several issues during the engagement that could have been prevented by a
more thorough test suite (TOB-CHROMAWAY-1, TOB-CHROMAWAY-4,
TOB-CHROMAWAY-6).

In addition, the unit test branch coverage of the EBFT and Networking components was
measured at 46% and 15%, respectively, which is unusually low for a blockchain node
project. For blockchain node projects, we normally recommend 60% branch coverage at
absolute minimum, with 75-95% coverage recommended for critical code paths and more
mature projects.

While reviewing the project, we also identified some issues with code complexity
management that may make high quality tests much harder to write.

Plan for Remediation

1. Refactor the system to make it more testable.
Kotlin is a unique language in that it combines the properties of object-oriented languages
with functional programming. However, this can make it much harder to write easily
testable code. We recommend that ChromaWay refactors its Kotlin codebase to respect the
following coding standards to help keep the code easily testable and maintainable.

Use pure functions wherever possible, even at the expense of OOP patterns
“Pure” functions are functions that do not mutate or view any external state; instead, they
simply accept parameters and return values. Pure functions are extremely easy to test
because it is very clear what data has to be mocked to test them. The use of pure functions
often comes at the expense of OOP design patterns; functions within a class are
encouraged to be tightly coupled with the class’s state and to be hidden from external
callers.

One good design rule that can be used to weigh whether a function should be pure is that
if a function does not write to the class’s state, it should be converted to a pure function.
This is doubly applicable if the function reads only from publicly accessible class variables.
One good example is the countNodes function, shown in figure D.1.

private fun countNodes(state: NodeBlockState, height: Long, blockRID: ByteArray?):
Int {

Trail of Bits 74 ChromaWay Security Assessment
PUBLIC

var count = 0
for (ns in nodeStatuses) {

if (ns.height == height && ns.state == state) {
if (blockRID == null) {

if (ns.blockRID == null) count++
} else {

if (ns.blockRID != null && ns.blockRID.contentEquals(blockRID))
count++

}
}

}
return count

}

Figure D.1: The countNodes function does not mutate any class-internal state, and is thus a
good candidate for conversion to a pure function.

(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa
nager.kt#63–76)

Avoid using lambda expressions unless necessary
Lambda expressions are often very challenging to test since they are not directly accessible
from the test suite, and they are often declared in parts of the codebase that are “far away”
from where they are actually used (and need to be tested). We observed that in some
cases, ChromaWay uses lambda expressions for code organization, making the code
harder to test and less readable with no discernible benefit, as shown in the
shouldRecomputeStatusAgain function in figure D.2.

By breaking lambda expressions into separate second-class functions, they can be directly
tested by the test suite and even be converted into pure functions in some scenarios.

fun shouldRecomputeStatusAgain(): Boolean { // Not private bc unit test

fun resetBlock() {
[...]

}

fun potentiallyDoSync(): FlowStatus {
[...]

}

fun potentiallyRevolt(): FlowStatus {
[...]

}

fun handleHaveBlockState(): Boolean {
[...]

}

fun handlePreparedState(): Boolean {

Trail of Bits 75 ChromaWay Security Assessment
PUBLIC

[...]
}

fun handleWaitBlockState(): Boolean {
[...]

}

if (myStatus.state != NodeBlockState.Prepared) {
when (potentiallyDoSync()) {

FlowStatus.Break -> return false
FlowStatus.Continue -> return true
FlowStatus.JustRunOn -> Unit // nothing, just go on

}
}
[...]

}

Figure D.2: The shouldRecomputeStatusAgain function relies heavily on lambdas to
implement the EBFT state machine, but these individual functions cannot be individually tested

because they are lambda expressions.
(postchain/postchain-base/src/main/kotlin/net/postchain/ebft/BaseStatusMa

nager.kt#371–601)

2. Create function-level unit tests that test the behavior of each individual function
These tests fulfill the role of traditional unit tests: they ensure that your CI screams if you
make a change that critically breaks something. When writing these tests, the goal is to
obtain a breadth of coverage, preferably at least 60% branch coverage.

When writing these unit tests, you should always test the “bad case” wherever possible. For
example, if you have a function that verifies signatures, you should have at least two test
cases for it: one that verifies a correct signature, and one that verifies the function will
catch an incorrect signature.

This may be especially challenging for the networking component. If the networking
component was not written with testability in mind, it may be challenging to refactor to
make it testable. Depending on how soon ChromaWay will migrate to libp2p, it may make
more sense to skip breadth-of-testing coverage for the networking component, since much
of the code will be removed for libp2p.

3. Create end-to-end tests that verify the properties and expected behavior of the
protocol as a whole
This task helps ensure the stability of the protocol overall, not just test coverage. One
example of an end-to-end test could be a regression test for TOB-CHROMAWAY-7: a
regression test for this finding will require setting up multiple nodes with very specific
configurations to test the scenario.

Trail of Bits 76 ChromaWay Security Assessment
PUBLIC

It is important to avoid accidentally inflating test coverage measurements with end-to-end
tests. It is very easy to obtain a very high coverage using end-to-end tests, when in reality,
they adequately test very few code paths.

Trail of Bits 77 ChromaWay Security Assessment
PUBLIC

